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Small-scale Processes at the Top of Stratocumulus Are Key
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1. Longwave radiative cooling
2. Evaporative cooling
3. Turbulent entrainment across a stably stratified region
4. Droplet sedimentation (cloud microphysics)
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Hierarchical Approach: Mixed layer <+ Cloud top
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Mixed-layer analysis needs the mean entrainment velocity
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Cloud-top analysis of meter & submeter-scale phenomena provides it.
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We Can Resolve Submeter Scales of Cloud-Top Structure
As Observed in Measurements
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And We Can Partly Reproduce Large-Scale Properties

DNS of 150 m cloud top driven by radiative and evaporative cooling (DYCOMS-II RF01) resolved to 10 cm.
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Governing Equations in Eulerian Framework

Disperse and dilute multi-phase flow (liquid volume fraction 107¢) with small Stokes numbers
(< 1072) and moderate settling numbers (= 0.5).

Anelastic approximation to Navier-Stokes equations plus:

enthalpy  pretDih = V- [prpVh — pju(he — h)] = V- (pir)
total water  pretDigy = V- [pry Vg, — pju(1 —qi)]
liquid water  pretDige = V- [pryVar — pju(1 — q0)] + (0:pe) con -

Cloud processes to be modeled:
1. Radiative flux pjy.
: Latent heat effects.

con”

3. Transport flux pj,: Droplet sedimentation.
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2. Rate of phase change (9;pqr)
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Cloud-Top Integral Analysis Provides Expression for w,

Evolution equation for the buoyancy b (normalized density anomaly) can be derived from the
linearized equations of state:

Db = V-[kpVb = ju(be — )] = BaVir + By, (9e40) con -
(i are thermodynamic partial derivatives.)

Integral analysis from inversion height z; upwards yields analytical expressions to calculate we:

Zoo

we(AD) 5, =~ _<wlb/>zi + Br(Ajr)z — By, / (0¢40) con dz = g{|dpul) 2

Zi

= We = (we)mix + (we)rad + (we)eva + (we)sed

(g is the magnitude of the gravity acceleration.)
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Model for Gravitational Settling: Assumed Droplet-Size Distribution

Since the transport flux is

Pip = paeldd [ (d3d)]uso = podeo(n/no)(d®/di)usp
we need a model for the 5.-order moment of the droplet-size distribution, and then either the

3.-order moment or the cloud-droplet number density.

Following previous work, we assume a log-normal distribution with a constant number density,
which leads to

&5/ (d3dg) = exp(50°)(ge/q0.0)" -
We consider a narrow distribution (o, ~ 1.0) and a broad one (o4 ~ 1.5), where o4, = exp(0).

What is the effect of small-scale turbulence?
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Sedimentation Can Reduce Entrainment Significantly
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1. Almost 50% reduction of we, 2-3 times larger than previously reported.
2. It depends on the meteorological conditions.
3. It depends on droplet-size distribution.
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Two Contributions from Settling to Entrainment Velocity

Integral analysis yields analytical expressions to calculate we:

We = (we)mix + (we)rad + (we)eva + (we)sed .

Two contributions:

1. Direct contribution: Increase of mean buoyancy for z > z; by removal of droplets translates
into a negative (We)sed

(we)sea = —g(ljul)/(Ab)z, o qed®/d® o< nd®

Responsible for almost 30% of the reduction.

2. Indirect contribution: Changes in (We)mix + (We)rad + (We)eva. In particular, reduction of
cloud-top cooling because of removal of droplets.

= Better characterization of droplet-size distribution needed.
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What is the skill of DNS
to study the whole stratocumulus-topped boundary layer?

Work with C. S. Bretherton and B. Stevens.






1. A Kolmogorov scale of ~ 1.4 m reproduces the central distribution of LES models.
2. A Kolmogorov scale of ~ 0.7 m reproduces more that 70% of measured LWP, about 90%
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Approaching Reynolds Number Similarity

1200
1000 -
800 -
’./—"’ . °
E 600] ® o
N
400 -
200
Np=2.8m No=14m—1np=0.7m
0 1 2 3 4 5 -0.10 —-0.05 0.00 0.05 0.10
t (h) (W m3s73)

of skewness of vertical velocity.
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of skewness of vertical velocity. Why?
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Resolving the Ozmidov Scale in the Cloud-Top Region
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We start to represent motions smaller than the Ozmidov scale, which is the lower bound of
length scales strongly influenced by stable stratification.

@

Max-Planck-Institut 3
fur Meteorologie Mellado, Bretherton & Stevens, to be submitted




Summary & Conclusions

Need to advance understanding of droplet-size distribution and microphysics effects
in cloud boundaries near entrainment zones

Relevance of droplet sedimentation for cloud lifetime because of
mixing effects (not only precipitation effects).

We can now complement laboratory experiments and field mea-
surements with DNS.
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