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Abstract

A simplified cloud-clear air interface is studied through a direct numerical
simulation on a grid of 512 × 512 × 1024 points. The interface is simulated
through a time decaying turbulent shearless mixing layer between two homo-
geneous and isotropic turbulent field with different turbulent kinetic energy.
The Navier-Stokes equations in the Boussinesq approximation are solved for
an incompressible fluid together with the advection-diffusion equation for the
water vapour density, seen as a passive scalar. Water droplets dynamics is
taken into account through the solution of the droplets momentum equations
together with the water droplets growth equation. The main water particles
growth mechanism are the water vapour diffusional growth and the collision-
coalescence growth which are both considered in the code. The feedbacks of
the water droplets dynamics on the velocity, temperature and vapour density
fields are taken into account. Two simulations has been carried out. The first
simulation describes a situation in which the cloud region (the high energy
region) is supersaturate and the interface is initially saturate and the Tay-
lor microscale Reynolds number is Reλ = 43. The second simulation analyse
the case in which the cloud region is saturate and the interface is subsatu-
rate, while the Taylor microscale Reynolds number is slightly higher than in
the first simulation, Reλ = 53. In this work not only the main features of
the particular turbulent shearless mixing simulated are described but also the
temperature and the water vapour density transport across the mixing layer
are analysed together with the water droplets dynamics. In particular the role
of turbulence in advecting the inertial particles is investigated through the vi-
sualization of the clustering phenomenon. The time evolution of the droplets
size distribution spectrum has been analysed for both the simulations. The
aim of this work is the study of the water droplet dynamic in a saturated
and supersaturated turbulent environment and the effect of the entrainment
on water droplets at the cloud-clear air interface. In the saturated case, a
very strong reduction in the liquid water content due to the intense evapo-
ration is observed, while in the supersaturated case an increase in the liquid
water content can be seen. The droplets size distribution analysis showed the
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same trend, a strong decrease of the mean droplet radius is observed for the
saturated case and a slight increase of the mean radius is seen for the super-
saturated case. Finally from the visualization of the water droplets spatial
distribution a significant clustering is observed. Furthermore it is shown that
the water droplets concentrate in the low vorticity intensity regions. Only two
eddy turnover time was simulated and a significant droplet growth cannot be
appreciated, but the results obtained agree with the results in literature.
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Chapter 1

Introduction

Cumulus convection has a great importance in climate and weather. It plays a
key role in the hydrological and energy cycle through the vertical transport of
heat, moisture and momentum, it is responsible for precipitation and clouds
formation (de Rooy et al., 2013). Atmospheric clouds may extend over dis-
tances of several hundred kilometres and among them particular attention is
given to "warm" clouds, whose top is below the freezing level. Warm clouds,
such as subtropical stratocumulus and tropical shallow cumulus, cover a large
portion of Earth’s tropic and subtropic and because of that they largely affect
the global energy balance through interaction with the incoming solar radiative
flux. The solar radiative flux is partitioned into energy reflected back to space
(thus contributing to Earth’s albedo) and energy absorbed by the climate sys-
tem (Grabowski & Wang, 2013). Atmospheric aerosol concentration affect the
cloud albedo and the cloud lifetime, referred to as the aerosol first and sec-
ond indirect effects respectively. In particular aerosol number concentration
is related to the cloud droplet size distribution and larger droplet and wider
droplet size distribution increase the efficiency of the precipitation formation
process, thus affecting both aerosol indirect effects (Chandrakar et al., 2016).
Furthermore rainfall produced in warm clouds, by a water droplet collision-
coalescence growth, accounts for approximately 30% of the total rainfall on
the planet and roughly 70% of all rainfall in the Tropics (Lau & Wu, 2003).
It is therefore evident the strong impact that this type of atmospheric clouds
has on Earth’s climate and on climate change.

A warm cloud is a very complex system which involves a wide range of
scales, from the cloud microscale (few micrometers) to the global scales (thou-
sands of kilometers). The numerical models used to predict the weather and
to study the climate cannot resolve all the scales involved in the system
(Grabowski & Wang, 2013). The fact that all these scales are intrinsically
linked and the lack of a numerical model that span all the relevant scales make
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1 – Introduction

it difficult to understand this atmospheric phenomenon and particularly to
predict cloud lifetime and consequently the development of precipitation (De-
venish et al., 2012). In order to get a better understanding on water droplets
growing inside a warm cloud and on rain formation, cloud microphysics needs
to be studied. For many years a great part of the research has been devoted to
understand the microphysical processes inside warm clouds and the role of tur-
bulence on cloud formation, from the cloud scale to the droplet scale. However
it is very difficult to make a direct observation and to take a measurement of
the cloud microphysical processes, such as cloud droplets nucleation, conden-
sation (evaporation) and collision - coalescence (breakup). In order to study
the cloud evolution, the whole process of rain drop formation needs to be de-
scribed, exploring the continuous growth of droplet from tenth micrometre to
hundreds micrometre in radius (Gotoh et al., 2016). Small aerosols (few tenth
micrometer) of different nature (e.g. organic material, pollution) dispersed in
the atmosphere act as cloud condensation nuclei (CCN). The activation of the
CCN due to the supersaturation lead to formation of small water droplet, with
a typical radius of about 1 µm. These small water droplets, formed from the
activated CCN, grow initially by condensation of water vapour. Diffusional
growth is the most efficient droplets’ growth mechanism by which they reach
around 15 µm in radius, from the activated CCN size (Beard & Ochs, 1993;
Raes, 2006). The rate of increase of droplet radius is inversely proportional to
the radius itself. The more the radius increases, the slower it grows until the
droplet reaches a size of about 15 µm, beyond which water vapour diffusion is
no longer an efficient growth mechanism. This inefficiency is due to the fact
that the supersaturation decreases during the diffusional growth (Grabowski &
Wang, 2013). The collision - coalescence is the main droplet growth mechanism
for droplets larger than 40 µm in radius. Since both diffusional mechanism and
collision - coalescence mechanism are not efficient, it is difficult to explain the
rapid cloud droplets growth in the size range 15 µm − 40 µm in radius, which
is called the condensation - coalescence bottleneck or size gap (Grabowski &
Wang, 2013).

A fundamental aspect in the study of the clouds dynamics is the role of
turbulence and the effects that it has on cloud microphysics. The air tur-
bulence main characteristics are the large Reynolds number, relatively small
energy dissipation rates ϵ, which ranges from 10−3 m2 s−3 in stratocumuli to
10−2 m2 s−3 in cumuli (Pruppacher & Klett, 1997), wide inertial subrange and
moderate velocity fluctuations (Shaw, 2003). Water droplets are transported
and dispersed by the energy containing turbulent eddies (large scale eddies of
the order of 100 m), while they modify the local environment (droplet scale)
through the mass, momentum and energy transfers. Furthermore the mass
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1 – Introduction

and energy transfers affect the cloud dynamics through the buoyancy effect.
In general the turbulent kinetic energy flows from the cloud scales (around 1
Km) to dissipative scales (around 1 mm), while the latent heat flows from the
droplet scales to the large cloud scale. For this reason the interaction between
the cloud dynamics and cloud microphysics is a very complex multiscale and
multiphase phenomenon. Since we focus in cloud microphysics, it is funda-
mental to investigate the effects that the small scale turbulence has on the
droplets growth. The small scale turbulence is described by the Kolmogorov
scale which is of the same order of magnitude of the mean distance between
droplets, therefore a direct numerical simulation (DNS) is the right approach
for this type of study. According to Vaillancourt et al. (2002) the small scale
turbulence has a negligible effect on droplets growth by condensation due to
the fact that the diffusional growth is reversible and a droplet which is growing
faster at one instant it will move to a region where the local environment con-
ditions are not conducive to growth. Paoli & Shariff (2009) carried out similar
simulations to those of Vaillancourt et al. (2002), but they added forcing terms
in temperature and moisture equations, obtaining a significant increase in su-
persaturation field fluctuations. Since these forcing terms are closely related
to entrainment (large scale process of bringing unsaturated clear air into the
cloud through the instabilities at the cloud - clear air interface) and large scale
mixing, Paoli & Shariff (2009) DNS simulations show the great importance
of turbulent entrainment, in affecting the droplet spectrum broadening. The
small scale turbulence, despite ineffective in the spectral broadening, allows
droplet to move from one inertial - range eddy to another. The mechanism
through which the small scale eddies and the inertial - range eddies jointly
interacts is referred to as large-eddy hopping. The combination of large-eddy
hopping mechanism with the energy - containing scale processes, such as en-
trainment, contributes to a significant spectral broadening. Turbulence largely
affect the collision - coalescence mechanism through the enhancement of the
collision kernel, defined as the collision rate normalized by the relevant droplet
pair concentration. This collision kernel enhancement is a combination of dif-
ferent effects among which the droplet clustering, produced by the small scale
turbulence. Finally turbulence seems to play a significant role in accelerating
warm rain formation process.

This project focuses on the small - scale microphysical processes and on
the study of the dynamics of the interface between a warm cloud and the
surrounding clear air. The simulation of the cloud interface and of the cloud
microphysics is carried out by a DNS approach. The computational model
solves the fluid motion through an Eulerian formulation while the particle
motion by a Lagrangian tracking method. The cloud interface is modelled
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1 – Introduction

through two fields at different turbulent kinetic energy, which represent the
warm cloud and cloud - free air, respectively. The model solves the equa-
tions for the transport of the water vapour and the temperature fields, seen as
passive scalars, and it includes a set of equations for the study of the complex
cloud droplets dynamics and droplets growth. The diffusional and the collision
- coalescence growth mechanisms are taken into account by the computational
model, which considers also the droplet’s feedback on the fluid. In Chapter
2 a general description of warm cloud physics is presented while particular
attention is given to cloud - clear air interface dynamics and its modelling as a
turbulent shearless mixing. A description of the model equations implemented
in the DNS code is also in this Chapter. In Chapter 3 the focus is on the water
droplets dynamics and their growth stages. Results analysis are in Chapter 4
while the final conclusions are in Chapter 5.

4



Chapter 2

Warm cloud dynamics

Atmospheric clouds are the manifestation of the moist convection, which is
a mixture of dry air and water vapour. Cloud air is a suspension of moist
air and liquid water particles. The clouds which do not contain ice particles
but only liquid water, are referred to as "warm clouds", whose cloud-top is
below the freezing level. Convective clouds such as cumulus and stratocu-
mulus are examples of warm clouds and they are the two types of clouds on
which the present project is focused. The cloud is a very complex atmospheric
phenomenon which covers a wide range of scales, from the large scales of the
order of magnitude of a Km till the smallest scale (the Kolmogorov scale)
of the order of magnitude of few mm, and it concerns several different pro-
cesses, such as entrainment and mixing at the cloud-clear air interfaces, water
droplet growth and precipitation. Both the macro- and micro-scale processes
are affected by turbulence which plays a key role in the cloud formation and
evolution.

2.1 Turbulence role in clouds
Convective clouds are multiscale and multiphase turbulent flows. From the
fluid dynamics point of view this is due to the fact that the typical Reynolds
number of these flows is much higher than the critical Reynolds number which
defines the transition to turbulence (from few thousands to tens of thousands).
Assuming that typical shallow convective clouds values of velocity and length
scales, are around 1 ms−1 and 100 m and considering the kinematic viscosity of
the air, a conservative estimate of the Reynolds number of this type of clouds
is of the order of 107 (Devenish et al., 2012), which guarantees a turbulent
flow. As for all the bodies that move in a fluid, even for the Earth a boundary
layer develops on its surface. The atmospheric turbulent boundary layer is the
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2 – Warm cloud dynamics

main source of the clouds turbulence, feeding the small convective cumulus
updraught. However it is evident that the turbulence intensity is different de-
pending on the cloud type and the level of its evolution. Some estimates of the
main parameters which characterize the turbulence in warm clouds, such as the
mean turbulent kinetic energy dissipation rate ϵ and the Taylor-scale Reynolds
number Rλ, are obtained by in-field measurements. Regarding the stratocu-
mulus Siebert et al. (2010) measured ϵ ∼ 1 cm2s−3 and obtained Rλ ∼ 5000,
while for the small cumulus clouds Siebert et al. (2006) measured ϵ ∼ 10
cm2s−3 with Rλ between ∼ 30000 and 40000. These estimates are only mean
values and they do not provide any information about the large fluctuations in
the local dissipation rate. The dissipation rate ϵ seems to vary with height, in
particular from the cumulus clouds measurements performed by MacPherson
& Isaac (1977) and Gerber et al. (2008) it is shown that ϵ reach the maxi-
mum near the cloud top. Furthermore, the turbulence intensity is the highest
near the cloud edge because of the turbulent entrainment and mixing between
the cloudy and the environment air (Siebert et al., 2006), while it is much
smaller below the cloud base. Entrainment plays a key role in the clouds dy-
namics. It occurs when two turbulent fluids with different densities penetrate
each other and then mixes. The entrainment is a three-stages process. Firstly,
it takes place the engulfment of dry air of the surrounding environment by
turbulent cloudy air. Through the action of turbulence, the engulfment forms
filaments of dry and cloudy air and as these filaments reach the Kolmogorov
scale, the mixing process acts to obtain a homogeneous mixture of the two
different fluids (Devenish et al., 2012). The entrainment process depends on
the environmental conditions and on the cloud type. In isolated cumulus, dry
air entrainment causes a strong cloud dilution compared to its effects on a
stratocumulus. For cumulus clouds the nature of the entrainment is still sub-
ject of debate. While Squires (1958) argues that vertical entrainment, through
the penetrative downdraught into the cloud top, was the main dilution mecha-
nism in cumulus clouds, Blyth et al. (1988) states that cloud top entrainment,
considering the small descending mass fluxes, cannot cause the observed di-
lution in cumulus clouds. More recent results obtained by Heus et al. (2008)
showed that lateral entrainment is the primary dilution mechanism. Heus &
Jonker (2008) developed a conceptual view in which the cumulus convection
was modelled through a cloud core, with positive buoyancy, surrounded by a
descending shell negatively buoyant, originated by evaporative cooling. Dry
air is so entrained through the descending shell and the mixing between dry
and cloudy air is not instantaneous. These results agree with the observations.
Stratocumulus dynamics is very different from the dynamics of the isolated
cumulus clouds and so the entrainment processes are different. Stratocumulus
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2 – Warm cloud dynamics

forms at the stably stratified transition layer (temperature inversion or density
interface) which separates the shallow, cool and moist thermal boundary layer
and the much warmer and drier subsiding atmosphere, capping the mixing
layer. In this case the entrainment of warm and dry air from above occurs
at the cloud top interface, thanks to the convective turbulence, driven by in-
frared radiative cooling at the cloud top, impacting the cloud top interface
(Stevens, 2005). The mixture resulting from the mixing between the warmer
subsaturated air above the temperature inversion and the saturated cooler air
below it, can be negatively buoyant. The buoyancy is a non-linear function
of the fraction of the two fluids involved in the mixing (see 2.1). During the

Figure 2.1. The virtual potential temperature θv (a measure of density) of
the cloudy-clear air mixture is a function of the fraction of the environmental
air (χ) in the mixture. The value χcrit is the limit of χ to which the mix-
ture is neutrally buoyant. The values θv,c and θv,e are the virtual potential
temperature of the cloudy air (χ = 0) and of the environmental air (χ = 1)
respectively (de Rooy et al., 2013).

mixing the subsaturated air dilutes the saturated air causing the water droplet
to evaporate and if the temperature of the mixture is not sufficient to offset
the evaporating cooling, the density of the mixture will be higher than both
the two mixing fluids. This phenomenon is know as the buoyancy reversal and
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2 – Warm cloud dynamics

it causes dry air mass fluxes to penetrate the cloud top. Buoyancy reversal can
lead to the cloud top entrainment instability but it is not sufficient to destabi-
lize stratocumulus. Aircraft measurements (Gerber et al. (2005)) confirm the
existence of an entrainment interfacial layer, a mixture with a particular frac-
tion of the mixed fluids that does not lead to negative buoyancy. As a result
there is not a direct mixing between cloudy and dry air, but a mixing occurs
between the entrainment interfacial layer and the cloud top. The entrainment
rate is modified by the presence of this layer. This layer is not deep so its dy-
namics is governed by the small scale turbulence and so the entrainment is not
only an energy-containing eddies process but it is also sensitive to the smaller
scales. As already mentioned in Chapter 1, after the cloud condensation nuclei
activation, the cloud droplets grow by molecular diffusion and condensation
of water vapour until they reach a size of around 15 µm in radius. Water
droplets larger than 50 µm grow efficiently by collision and coalescence, while
droplet growth in the size range of 15−50 µm still remains difficult to explain.
Turbulence and gravity have a great effect on the droplet growth mechanism
and consequently on the droplet size distribution. The droplet are assumed to
be spherical and any droplet shape deformation is neglected. Moreover since
we are interested in the effect of turbulence on the growing of the particles, we
focus on small droplets with a radius of less than 100 µm. For small droplets
the Reynolds number, calculated using as reference quantities the velocity of
the particle relative to the flow and particle diameter, is small enough that the
Stokes law is used as a good approximation. According to the Stokes drag, the
inertial response time of the droplet τp is

τp = 2
9

ρwa2

µ

where ρw is the water density and µ is the air dynamic viscosity. Since the
typical value of the Kolmogorov length scale for small cumulus cloud is η ≈ 1
mm (Shaw, 2003) and it is much larger than the droplet size, we deduce
that the small-scale turbulence dynamics is very important, particularly the
dissipation range. The interactions between turbulence, gravity and water
particles are characterized by two important parameters, the Stokes number
St and the non-dimensional parameter Sv. The number of Stokes is defined as
the ratio of the droplet inertial response time to the Kolmogorov time scale τη

St = τp

τη

If the Stokes number is large (more than 1) so it is the particle inertia and the
droplet and the fluid motions are likely to be uncorrelated. The Sv parameter
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2 – Warm cloud dynamics

is defined as the ratio of the eddy turnover time (in the dissipation range this
time is the Kolmogorov time scale) to the time that it takes for a droplet to
sediment across that eddy τv

Sv = τη

τv

or in velocity terms
Sv = vT

vη

where vT is the terminal velocity and according to the Stokes drag hypothesis
it is defined as vT = τpg. Finally if St represents the particle inertial response
to the turbulent changes, the Sv quantifies the relative importance of gravity
(sedimentation) and turbulence. Since

τη =
(

ν
ϵ

)1/2
and vη = (ϵν)1/4

it follows that

St ∼ ϵ1/2 Sv ∼ ϵ−1/4

where ϵ is the energy dissipation rate. Both St and Sv depend on ϵ but the
gravity and turbulence effect on microphysics cannot be fully described by the
variation of these two parameters with the mean values of ϵ. The energy dissi-
pation rate has a distribution of values. There are localized region in which the
dissipation rate assumes values very different from the mean value due to the
fluctuations. Droplet growth by condensation of water vapour depends on the
ambient condition, that is the temperature and moisture fields in the vicinity
of a droplet. From a time scale analysis Vaillancourt et al. (2001) shows that
the ratio of the slowest time scale associated with the water droplet growth
by condensation, to the fastest time scale relative to the ambient conditions
changes due to turbulence, is less than one. For this reason the temperature
and moisture fields can be assumed to be steady-state fields. The conden-
sational growth of particles is strictly related to the supersaturation field s.
The supersaturation, which is defined as s = e/es − 1 where e and es are the
actual and saturated vapour pressure, is affected by the vertical velocity fluc-
tuations and the spatial droplet distribution. In the past decades extensive
research has been carried out to better understand the effects of small-scale
turbulence and sedimentation on droplet spectrum broadening and on the con-
densational growth. Vaillancourt et al. (2001) showed that a random spatial
droplet distribution, neglecting the sedimentation effect, significantly perturbs
the supersaturation field. The small scale turbulence affect the droplet distri-
bution (clustering). Shaw et al. (1998) showed the effect of droplet clustering
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2 – Warm cloud dynamics

on the condensational growth. The authors assert that fluctuations in droplet
concentration due to turbulence cause large fluctuations in supersaturation s.
In this case single droplets grow at different rates according to their position
in the flow, provoking the broadening of the droplet size spectrum. According
to Vaillancourt et al. (2002), who studied particle condensational growth in a
homogeneous isotropic turbulent field, sedimentation reduces the widening of
the droplet spectrum. Moreover the authors argued that increasing the dissi-
pation rate ϵ leads to an increase of the supersaturation fluctuations due to
droplet clustering, but the supersaturation fluctuations and droplets are less
correlated. The small-scale turbulence alone does not explain the observed
broadening of the droplet spectrum. In conclusion Sidin et al. (2009) simu-
lated a wider range of scales through the use of a kinematic simulation. They
studied the condensational growth and they assert that both large and small-
scale turbulence are necessary to reach a significantly broadening of particle
spectrum. According to the large-eddy hopping mechanism (see Chapter 1)
droplets move from one large-eddy to another through the action of the small
scales, which mix droplets of different growth history. The large-eddies have
different vertical velocity and consequently they may have different levels of
supersaturation seq, where seq is the supersaturation at the equilibrium. Cloud
droplets grow at different rates in different large-eddies, while the small-scales
mix them and so the droplet size spectrum widens. The collision-coalescence
is the main growth mechanism for larger droplets and it is governed by geo-
metric collisions, collision efficiency and coalescence efficiency. In this project
it is assumed that the coalescence always occurs whenever a collision occurs.
The assumption is justified for droplets smaller than 100 µm as shown in wind
tunnel experiments conducted by Vohl et al. (1999). Turbulence affect the
collision kernel, which is a measure of the collision rate, through the increase
of the droplet relative velocity and the enhancement of the radial distribution
function (RDF). In the case of a monodisperse distribution, when the number
of Stokes is low there is a strong correlation between droplet velocities and
the fluid and consequently droplets relative velocity is low and turbulence is
not so efficient in enhancing the collision rate. Things are different when St
is larger and approach the unity, in this situation a high decorrelation induces
an increase in the relative velocity. For bidisperse droplet gravity produce an
efficient increase in particle relative velocity. Small-scale turbulence is also re-
sponsible for the droplet clustering producing strong inhomogeneities in their
spatial distribution, enhancing the RDF and consequently the collision rate.
Particularly the droplets move towards region of low vorticity and high strain
rate due to centrifugal effect (Maxey, 1987). In conclusion turbulence inertial
effects, such as clustering, can accelerate the droplet growth in the size gap.
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2 – Warm cloud dynamics

Moreover turbulence effects, enhancing the collision kernel, lead to an impor-
tant acceleration in the warm rain formation (Grabowski & Wang, 2013).

2.2 Cloud-clear air interaction through turbu-
lent transport

It is not an easy task to study the dynamics of the interface between cloudy air
and environmental air, because of the many processes that occur at the cloud’s
interfaces, such as entrainment and mixing, latent heat flows, buoyancy effects.
The structure of the interface depends on the type of clouds (the stratocumulus
top interface is different from the small cumulus top) and also on what kind
of interface is being considered, if it is an isolated small cumulus lateral edge
interface or its top/bottom interface. At the lateral edge interface of an isolated
small cumulus cloud, entrainment and mixing between cloudy and clear air are
not instantaneous and they happen through the descending shell, which is a
negatively buoyant flow originated from evaporative cooling. Many research
campaign has been carried out in order to understand the cloud top interface
dynamics. In situ high spatial resolution measurements of temperature and
liquid water content, together with modest humidity and turbulent fluctuations
measurements, have been collected by Malinowski et al. (2013) during the
stratocumulus top campaign. The authors proposed a division into layer of
the stratocumulus top region. In the figure 2.2 the temperature, liquid water
content and velocity fluctuations profiles allow us to recognize the distinctive
features of the layers. Proceeding downward from above the cloud top (in
the figure 2.2 from left to right), the first region is the free troposphere FT ,
characterized by small velocity fluctuations and small temperature gradient
and by the absence of liquid water. Then at a certain altitude the temperature
drops about 8 K. Temperature and velocity fluctuations increase while the
liquid water content is still zero, suggesting the presence of a layer between the
cloud top and the FT , the so called turbulent inversion sublayer TISL (67728−
67735 s in fig. 2.2). Just below this layer, the authors identified a region
characterized by peaks in the LWC alternate with null value part, indicating
that the aircraft penetrated a series of cloudy and clear air filaments. This
region, where temperature and velocity fluctuations are increased, is named
cloud top mixing sublayer CTMSL (67735−67750 s in fig. 2.2). The CTMSL
and the TISL together form the entrainment interfacial layer EIL, through
which occur the mixing between the cloudy and the environmental air. Finally
the aircraft reach the cloud top layer CTL, just below the EIL. In the CTL,
the LWC fluctuates in a considerable way and it takes everywhere positive
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2 – Warm cloud dynamics

Figure 2.2. In the top panel it is shown the temperature T and liquid wa-
ter content LWC profiles during the aircraft descent into the stratocumulus
from the free troposphere above the cloud top. In the bottom panel velocity
fluctuations and the altitude profiles are illustrated (Malinowski et al., 2013).

values, the temperature fluctuations become very small, while the velocity
fluctuations are significantly large, particularly the vertical component. In
figure 2.3 it is illustrated the variation across the layers of the turbulent kinetic
energy and of the gradient of the liquid potential temperature θl, which is
defined as

θl = θ exp −qlLv

cpT
with θ = T π

p
R/cp

where θ is the potential temperature, which is constant with the pressure
for isentropic displacement, π is the reference pressure, ql is the liquid water
mixing ratio, Lv is the latent heat of evaporation and cp is the constant pressure
specific heat (Stevens, 2005).

2.2.1 Simplified model of a cloud-clear air interface
In the present work the cloud-clear air interface dynamics and microphysics
are studied. The simulations are performed through a DNS (Direct Numerical
Simulation) code which implements a pseudospectral Fourier-Galerkin spatial
discretization and an explicit fourth order low storage Runge-Kutta time inte-
gration scheme. The convective term is computed through the 3/2 de-aliased
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2 – Warm cloud dynamics

Figure 2.3. In the top panel it is represented the gradient of the liquid water
potential temperature θl in the cloud top, cloud mixing, inversion and in the
free troposphere, while in the bottom panel horizontal wind and turbulent
kinetic energy are illustrated for the same layers (Malinowski et al., 2013).

method (Iovieno et al., 2001). The code uses a slab parallelization (only one
direction of the computational domain is distributed among the processors)
and the MPI (Message Passing Interface) standard was adopted. A small por-
tion of the atmosphere in-between a warm cloud and the clear air above, is
simulated in a parallelepiped domain. The cloud-clear air interface is modelled
as a turbulent shearless mixing in stratified condition. The turbulent shearless
mixing is generated by joining two homogeneous and isotropic turbulent field
with different turbulent kinetic energy, but with the same integral scale (see
figure 2.4). The highest turbulent kinetic energy region simulates the warm
cloud, while the other region simulates the environmental air above the cloud
top. Periodic boundary conditions in the three directions are considered. The
two turbulent homogeneous regions are randomly generated according to the
physical conditions imposed by the user, that are the energy spectrum, the
integral scale, solenoidality and the kinetic energy. The initial velocity field is
obtained by a linear matching of the two homogeneous and isotropic regions
with different kinetic energy, which interact through a mixing layer, whose ini-
tial thickness is almost equal to the integral scale l of the simulation we want to
make. The aim of the simulation is to study the microphysics of a warm cloud
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2 – Warm cloud dynamics

Figure 2.4. The parallelepiped domain obtained by joining two cubes in
which are defined two turbulent homogeneous and isotropic field with different
kinetic energy is illustrated. ∆ is the initial mixing layer thickness. Period
boundary conditions are considered (Tordella & Iovieno, 2011).

top interface, for this reason only the small scales of the turbulence are solved,
as it is shown in figure 2.5 which illustrates the wave-number range simulated.
The fluid motion is computed through an Eulerian formulation together with
the humidity and the temperature fields, seen as passive scalars. The water
droplets dynamics are also taken into account. A Lagrangian tracking method
is used to calculate the particle motion and an additional equation for the par-
ticle size variation is also solved. The simulation describes the water droplets
growth taking into account the condensation/evaporation processes and the
collision and coalescence mechanism. A particular module implemented in the
DNS code is able to detect the collision between particles and it is assumed
that every collision leads to coalescence. The droplet equations and a more
detailed discussion about water particle dynamics is described in Chapter 3.
The Navier-Stokes equations for an incompressible fluid are solved applying
the Boussinesq approximation, as the buoyancy effect and the temperature
variations need to be taken into account. In general, temperature variations
can be introduced through temperature differences at the boundaries or they
can be produced by release of latent heat associated to the water evapora-
tion/condensation. In the present simulation a local perturbation θ′ of the
standard atmospheric temperature profile has been implemented. The tem-
perature and the water vapour fields are imposed as initial conditions in all
the domain according to the profiles shown in figure 2.6 and 2.7. These tem-
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2 – Warm cloud dynamics

Figure 2.5. Kinetic energy spectra from in situ atmospheric observations
are illustrated in coloured lines, while the black solid line shows the present
simulation energy spectrum which covers the smallest scales of the inertial
range and the dissipative range (Gallana et al., 2014).

perature variations lead to fluid properties variations, such as heat capacity,
density and viscosity. According to the Boussinesq approximation (Tritton,
1988) all fluid properties variations are neglected except for the density. In
particular density, ρ, is assumed to be constant except when its variations, ∆ρ,
give rise to the gravitational force, a body force which is named the buoyancy
force. This approximation is justified by the fact that ∆ρ/ρ << 1 and that
the flow accelerations are small compared to the gravity acceleration g. The
Navier-Stokes equations for an incompressible fluid in the Boussinesq approx-
imation, coupled with the advection-diffusion equation for the water vapour
density ρv (seen as a passive scalar), are shown below

▽ · u = 0 (2.1)

∂u

∂t
+ u · ▽u = − 1

ρ0
▽ p + ν ▽2 u − Bg + fp (2.2)

∂T

∂t
+ u · ▽T = k ▽2 T − L

cp

Cd (2.3)
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Figure 2.6. Initial temperature profile.
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Figure 2.7. Initial density profile.

∂qv

∂t
+ u · ▽qv = kv ▽2 qv − Cd (2.4)

where 2.1 is the continuity equation, 2.2 is the momentum equation, while 2.3
and 2.4 are the advection-diffusion equations for the temperature and water
vapour density. In 2.4 the variable qv is the water vapour mixing ratio and it is
defined as qv = ρv/ρ0, where ρ0 is the dry air density at the initial temperature
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2 – Warm cloud dynamics

T0. The term Bg in the equation 2.2 is the buoyancy force, with

B = T − T0

T0
+ Mv

Ma

ρv − ρv0

ρv0

where ρv0 = ρvs(T0) is the saturated water vapour density at T0 and Mv/Ma

is the ratio of water molar mass to dry air molar mass. In the equation 2.3,
L is the latent heat of evaporation/condensation, cp is the constant pressure
specific heat, k is air thermal diffusivity while kv is the vapour diffusivity.
The terms fp and Cd are the particle force per unit volume on the fluid phase
and the condensation rate per unit volume respectively and they represent the
water droplet momentum and mass feedback on the fluid flow, in particular

fp = − 1
ρ0V

∑
k

mk
dvk

dt
(2.5)

Cv = 1
V

∑
k

dmk

dt
(2.6)

where the summation index k is referred to all the particles in the compu-
tational grid cell, V is the computational grid cell volume, mk is the single
particle mass and vk is the droplet velocity. In the code non-dimensional equa-
tions are solved, for this reason all variables must be dimensionless. In order to
make them dimensionless, the model reference quantities has to be introduced.
The reference length is LR, the velocity reference is the initial velocity root
mean square UR, the ambient conditions T0, p0 and ρ0 are the reference quan-
tities for temperature and pressure, while the saturated water vapour density
at T0 is the reference quantity for water vapour density. The dimensionless
variables are defined as follow

x̃ = x
LR

ũ = u
UR

T̃ = T −T0
T0

p̃ = p−p0
ρ0U2

R
R̃ = R

LR
ρ̃v = ρv

ρv0

Finally dimensionless parameters are defined as

Re = URLR

ν
Pr = ν

k
Scv = ν

kv

αF = gLR

U2
R
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2 – Warm cloud dynamics

where Re is the Reynolds number and Pr is the Prandtl number. Finally
the dimensionless set of the Navier-Stokes equations for the fluid phase in the
Boussinesq approximation are obtained

▽ · u = 0 (2.7)

∂u

∂t
+ u · ▽u = − ▽ p + 1

Re
▽2 u − αF B + fp (2.8)

∂T

∂t
+ u · ▽T = 1

RePr
▽2 T − ρw

ρ0

L

cpT0
Cd (2.9)

∂ρv

∂t
+ u · ▽ρv = 1

ReSc
▽2 ρv − ρw

ρv0
Cd (2.10)

where B = T̃ + ρ̃v − 1 and αF B is proportional to N2
ci = gαdT/dz which is

the characteristic Brunt-Väisälä frequency of initial condition, where α is the
fluid thermal expansion coefficient and z is the vertical direction. The Froude
number Fr is the dimensionless parameter defined as the ratio of the inertial
to buoyancy forces and it is Fr = urms

Ncil
where l is the simulation integral scale

(Gallana et al., 2014). In conclusion the buoyancy term in the equation 2.8 is
proportional to the inverse of Froude to the square αF B ∼ 1/Fr2. High values
of Froude number mean negligible stratification while low values of Froude
mean strong stratification.

2.2.2 Turbulent shearless mixing in stratified flows
The turbulent shearless mixing layer is the simplest example of inhomogeneous
turbulent flow. In the present work a turbulent shearless mixing layer is ob-
tained through the interaction of two homogeneous and isotropic turbulent
field (HIT), which have different kinetic energy (Tordella et al., 2008). In this
kind of mixing a mean flow is not considered and consequently there is no
production of turbulent kinetic energy and no mean advective transport. The
initial velocity conditions u for the inhomogeneous field is obtained by match-
ing the two turbulent velocity fields, u1 and u2, through a hyperbolic tangent
function (Tordella et al., 2008)

u(x) = u1(x)p(x) + u2(x) (1 − p(x))

with

p(x) = 1
2

[
1 + tanh

(
a

x

L

)
tanh

(
a

x − L/2
L

)
tanh

(
a

x − L

L

)]
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2 – Warm cloud dynamics

where x is the inhomogeneous direction, L is the length of the computational
domain in the x direction and a is a coefficient that defines the initial mixing
layer thickness. The coefficient a has a particular value so that the initial
mixing layer thickness is of the same order of the integral length scale. The
velocity field of the higher turbulent kinetic energy region, u1, is obtained by
defining the initial energy spectrum, while the lower energy region velocity
field, u2, is obtained by simply multiplying the velocity field u1 by a constant.
In this project the constant value has been chosen in such a way that the initial
energy ratio between the two HIT fields is E1/E2 = 6.7 which is consistent
with the cloud top measurements obtained by Malinowski et al. (2013) (see
figure 2.3). The integral length scale does not depend on the turbulent energy
intensity, but only on how the energy is distributed among the wavenumbers,
in particular the small wavenumbers that depend on the boundary conditions
and they do not have universal behaviour (Tordella & Iovieno, 2006). Based on
how the lower energy velocity field was built, the two HIT field have the same
energy spectrum and consequently the turbulent shearless mixing layer tem-
poral evolution is only driven by the energy gradient, while the integral length
scale is homogeneous throughout the field. Due to the lack of forcing terms in
the momentum equations, only a decaying turbulent mixing is considered. As
said in the previous section, a small temperature perturbation across the mix-
ing layer (see figure 2.6) is considered, through which fluid density variations
are taken into account. In this work, the turbulent shearless mixing layer of a
stratified flow is analysed. A stratified flow is a flow mainly in the horizontal
direction affected by vertical density variations. Density may decrease with
height, giving rise to a stable stratification, or it may increase, leading to an
unstable stratification (Tritton, 1988). The Froude number Fr is a dimen-
sionless parameter, defined as the ratio of the inertial forces to the buoyancy
forces due to density variations, which gives information on the intensity of
the stratification. For low Fr values, the flow is strongly stratified and vertical
fluid motions are strongly damped, while for high Fr values the stratification
is weak. In the simulations we have carried out, the Froude number is low and
its squared value is negative and consequently the stratification is strong and
unstable (see figure 2.8).
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2 – Warm cloud dynamics

Figure 2.8. The cartoon shows the initial temperature perturbation at the
cloud top interface under stable and unstable stratification. E1 is the mean
turbulent kinetic energy of the cloud region, while E2 is the mean kinetic
energy in the cloud free air region. In this work the initial energy gradient is
E1/E2 = 6.7. In the circle it is represented an example of the temperature
perturbation for the stable stratification case. Deltaθ ≈ 0.12 m is the initial
mixing layer thickness (Gallana et al., 2014).
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Chapter 3

Cloud microphysics

The study of the cloud microphysics concerns the analysis of the whole water
droplets dynamics, from the particle advection by small and large scale tur-
bulence to the evolution of the water droplet size distribution spectrum. The
role of turbulence on droplet growth was discussed in Chapter 2. The water
droplets growth is a complex process characterized by different stages: the
activation of CCN (Cloud Condensation Nuclei), diffusional growth, collision
and coalescence growth till the raindrops’ formation. The small aerosol par-
ticles, dispersed in the atmosphere, indirectly affect the optical properties of
the warm clouds. Albedo and cloud lifetime depend on the aerosol concentra-
tion, which has a strong influence on the droplet size distribution, affecting
the droplets’ concentration and mean radius. The experiments carried out
by Chandrakar et al. (2016) show that a decrease of the aerosol concentra-
tion leads to the broadening of the droplet size distribution (see figure 3.1).
According to the authors, the broadening is due to the large supersaturation
fluctuations which occur for low aerosol concentration, when the system is in
the regime of slow microphysicis. The slow microphysics regime is the limiting
regime where the phase relaxation time τc is greater than the turbulence cor-
relation time τt (Chandrakar et al., 2016). The atmospheric aerosols act like
cloud condensation nuclei, CCN, and are responsible for the droplet forma-
tion. Near the cloud base, where the relative humidity crosses the saturation,
first the largest CCN are activated and then, as the supersaturation contin-
ues to increases, the smaller CCN activation occurs. After that a sufficient
number of CCN are activated, the supersaturation starts to decrease due to
the fact that already activated droplets begin to grow, and the CCN acti-
vation stage is complete. The activated cloud condensation nuclei are small
droplets of around 1 µm of radius. The small water droplets initially grow by
diffusion and condensation of water vapour. The diffusional growth is a very
efficient growth mechanism for droplet of less than 20 µm in radius. The rate
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3 – Cloud microphysics

Figure 3.1. The figure shows the probability density function of the cloud
droplet diameter for five different aerosol concentrations. The aerosol con-
centration is represented in terms of aerosol injection rates, which are the
aerosol concentration divided by the chamber volume and multiplied by the
injection flow rate. It is evident the change in shape of the PDFs, in particu-
lar the broadening of the PDFs as the aerosol number concentration increases
(Chandrakar et al., 2016).

of increase of the water particle radius is inversely proportional to the radius
itself, so the larger droplets grow slower than the smaller ones (Grabowski
& Wang, 2013). The water droplet growth by gravitational collision and co-
alescence is very effective when the particles reach at least 40 µm in radius
(Pruppacher & Klett, 1997). Since the collision kernel (i.e. the normalized
collision rate) depends on the water droplet relative velocity, the collisions
between droplets are enhanced by gravity when droplets of different sizes are
in the cloud. In case a monodisperse droplet distribution is considered, the
turbulent collision occurs. The droplets clustering (preferential concentration)
is due to the turbulent transport of the inertial particles by the small scale
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3 – Cloud microphysics

turbulence. Vaillancourt et al. (2002) argue that turbulence has a negligible
effect on the droplets diffusional growth, due to the particles positions rapid
rearrangement according to which the fast growing droplets move to regions
where the water vapour condensation is inhibited by the low level of super-
saturation. Figures 3.2 and 3.3 show the clustering of droplets of different
sizes related to the vorticity field. It is evident that water droplets move to
regions with low vorticity intensity. In the collision-coalescence process, in-

Figure 3.2. In the top left panel the cross section of the vorticity
intensity field is represented, in the top right panel the positions of
droplets of 20 µm in radius is shown for the same cross section, in the
bottom left 15 µm and in the bottom right 10 µm droplets positions
are shown (Vaillancourt et al., 2002).
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3 – Cloud microphysics

Figure 3.3. The left panel shows the positions of droplets of two different
sizes: 20 µm and 30 µm in radius. The 20 µm droplets show a weaker
clustering than the 30 µm droplets. The right panel illustrates the normalized
flow enstrophy the same planar section (Grabowski & Wang, 2013).

teractions between droplets, called hydrodynamic interactions, play a key role
especially for smaller particles (less than 60 µm) whose inertial response time
is very short. When two droplets of different size approach each other viscosity
causes the smaller particle to be deflected from the collision trajectory. This
deflection is less intense for increasing droplet inertia (Devenish et al., 2012).
In this project all droplet-droplet interactions are neglected, consequently par-
ticles trajectories are not affected by the presence of the other particles and
every collision leads to coalescence of droplets. The water droplets growth in
the size range between 15 µm and 40 µm in radius, is still matter of debate and
it is difficult to explain, since both the diffusional and the collision-coalescence
growth mechanisms are ineffective in that particular size range, which is called
the condensation-coalescence bottleneck or the size gap. The effects of tur-
bulent mixing and entrainment, between cloudy and clear air, on the 0cloud
microphysics was studied by Kumar et al. (2013) through direct numerical
simulations which couple an Eulerian description of the turbulent velocity and
water vapour fields with Lagrangian tracking of cloud water droplets. Partic-
ularly interesting is the evolution of the droplet size distribution during the
turbulent entrainment process for two different cases. In the first case (see left
panel of figure 3.4) the vapour content relaxes to a homogeneous field below
the saturation level and all droplets evaporate. In the second case (see right
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3 – Cloud microphysics

panel of figure 3.4) the water vapour fluctuations decay to zero but the vapour
content relaxes to the saturation value leaving a distribution of droplets with
a mean radius r∞ at the steady state. In both cases the droplet size distri-
bution is negatively skewed due to the particles non-uniform exposure to the
subsaturated air. In conclusion, turbulence plays a key role in accelerating
in a significant way the process of warm rain formation (Grabowski & Wang,
2013).

Figure 3.4. The figure shows the time evolution of the droplet radius PDF
during the turbulent entrainment process. In the left panel the time evolu-
tion of droplet radius PDF is shown for an initial radius R0 = 10 µm (case
1) and for R0 = 15 µm (case 2) in the right panel. Data for Rλ = 59,
Ndrop = 1100000 and N3

x = 2563 (Kumar et al., 2013).

3.1 Numerical model for water droplet dynam-
ics simulation

As already mentioned in Chapter 2, the DNS code used to carry out the sim-
ulations of this project, solves the Navier-Stokes equations in the Boussinesq
approximation for an incompressible fluid together with the water vapour den-
sity advection-diffusion equation. This code also contain a module for the
Lagrangian tracking of water droplets. The module tracks the motion of each
particle through the solution of the related momentum equations, according
to the Stokes drag approximation and considering gravity. The equations for
water droplets positions and velocities are

dxk

dt
= vk (3.1)
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3 – Cloud microphysics

dvk

dt
= u (xk, t) − vk

τp

+ g (3.2)

where xk is the droplet position, vk is its velocity while u is the fluid veloc-
ity in the droplet position. Furthermore the water droplets dynamics model
implemented in the code takes into account the condensation and evaporation
processes and the related latent heat release. The droplets are assumed to be
spherical. The water droplets radius, Rk, is considered to vary as a function
of the local relative humidity φ in correspondence of the droplet position. Ac-
cording to the model developed by Vaillancourt et al. (2001) for the droplet
dynamics, the droplet growth equation is

Rk
dRk

dt
= KS (3.3)

with

S = p

psat (T ) − 1 = ρv

ρvs (T ) − 1 K−1 = ρwRvT

psat (T ) Dv

+ Lρw

ρacpkaT

(
L

TRv

− 1
)

(3.4)
where S is the supersaturation defined in terms of the water vapour pressure p
and the saturated water vapour pressure at the temperature T , psat (T ), or in
terms of vapour density ρv and saturated vapour density ρvs(T ). Then ρw and
ρa are the water and dry air density respectively, Rv = 461.5 J/KgK is the gas
constant for water vapour, Dv is the water vapour diffusivity, ka is the thermal
diffusivity, cp is the constant pressure specific heat and L is the latent heat of
condensation/evaporation. Two important non-dimensional parameter provide
insights into the relative importance of the thermal and vapour diffusivity
respect to the momentum diffusivity of air and they are the Prandtl number
Pr = ν/ka ≈ 0.71 and the Schmidt number Sc = ν/Dv ≈ 0.61. In the code the
equation implemented is slightly different, the last term

(
L

T Rv
− 1

)
is simply

written as L
T Rv

, and the supersaturation is defined in terms of water vapour
density. The final form of the droplet radius equation is obtained substituting
K and S in the equation 3.3

dRk

dt
= C

φ (xk, t) − 1
Rk

(3.5)

with

C =
[
ρw

(
RvT

Dvpsat(T ) + L2

ρacpkaRvT 2

)]−1
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where φ = ρv/ρvs(T ) is the relative humidity. The water vapour saturation
pressure psat is approximated by the Clapeyron-Clausius law

log psat

pR

= L

Rv

( 1
TR

− 1
T

)

where the subscript "R" indicates a reference quantity. Since the code solves
non-dimensional equations, using the same reference quantities and non-dimensional
parameters described in Chapter 2, we make the equations 3.5 non-dimensional

dR̃

dt̃
= 1

ReScr

1
R2

in

ρvs(T0)
ρw

⎛⎜⎜⎜⎜⎝ρ̃v −
exp

(
L

RvT0

T̃

1 + T̃

)
1 + T̃

⎞⎟⎟⎟⎟⎠ 1
R̃

(3.6)

where Re is the Reynolds number, Scr = ν/Dvmod
is the modified Schmidt

number (obtained using the modified vapour diffusivity Dvmod
) and Rin is the

non-dimensional initial radius of the initial droplet monodisperse spatial dis-
tribution, which is used to normalized the droplet radius. In addition droplets
can collide. The collision between water particles is taken into account by a
module that check at each time step the occurrence of collisions. As already
said in this Chapter introduction, droplet-droplet interactions are not consid-
ered and if the distance between two droplets centres is less than the sum of
their respective radii, a collision between them is supposed to happen.

3.1.1 Collision detection algorithm
In order to reduce the number of operations to detect the droplets collisions,
the domain is divided into smaller portions (subvolumes) that contain fewer
particles. The collision detection algorithm is organized in four stages. Firstly
the domain of each core is divided in cells. The grey area in figure 3.5 is
the part of domain assigned to the core Pi, while the thick black line define
the regions distributed to different cores. In each cell the algorithm looks for
binary collisions, but at this stage only the pairs inside the cells are detected
(blue dots in figure 3.5) but not the pairs whose particles belong to different
cells (red dots in figure 3.5). The partition of the domain is shifted by half
cell in one direction, the green lines in figure 3.6 show the original domain
partition, before the shift. After the shift all the pair that were at the borders
of the previous cells are now inside the shifted cells and can be detected. If the
shift direction is distributed, this step requires the transfer of particles (pink
dots in figure 3.6) between the adjacent cores (from core i + 1 to i and from
core i to i − 1). The third stage is the same of the first one except that now
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Figure 3.5. First collision detection (PHILOFLUID, 2016).

Figure 3.6. Particle transfer through the domain partition shift
(PHILOFLUID, 2016).

the collisions detection is carried out on the shifted cells (see figure 3.7). In
the last stage (see figure 3.8) the domain partition is shifted again by half cell,
but in the opposite direction as compared to the second step, and the original
domain distribution among the cores is restored. Cores communications occurs
if the direction is distributed (from core i − 1 to i and from core i to i + 1).
The steps 2 − 4 need to be repeated for each spatial direction. Detection of
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3 – Cloud microphysics

Figure 3.7. Second collision detection. It is carried out on the shifted
cells (PHILOFLUID, 2016).

Figure 3.8. The restoring of the original domain decomposition for
droplets (PHILOFLUID, 2016).

multiple collisions is allowed in step 3.
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Chapter 4

Results analysis and conclusion

The computational domain is a parallelepiped and it is obtained by joining two
cubes of length L. In each cube the turbulent velocity field is homogeneous and
isotropic, but the global turbulent velocity field in the parallelepiped domain
is inhomogeneous along the mixing direction, x3 in figure 4.1, which is referred
to as inhomogeneous direction, while it is still homogeneous in the other two
directions, x1 and x2 in figure 4.1, which are referred to as homogeneous direc-
tions. In order to solve the dissipative scales, an appropriate grid resolution,

Figure 4.1. The cartoon illustrates in the upper panel the parallelepiped
physical domain obtained by the joining two cubes of length L. In the lower
panel the computational domain is shown, where N and N3 are the number
of grid points along the homogeneous (x1 and x2) and inhomogeneous (x3)
directions respectively.
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4 – Results analysis and conclusion

∆x, must be chosen such that the Kolmogorov scale, η, can be solved. The
typical value of the Kolmogorov length scale in a warm cloud is of the order of
1 mm. The grid resolution is related to the Kolmogorov scale by the following
expression

η = 2∆x

where ∆x = 1 mm in the simulations carried out in this work and consequently
the smallest scale solved is η = 2 mm. The simulations are carried out using
a grid of N × N × N3 = 512 × 512 × 1024 points. According to the chosen
resolution grid ∆x, the physical domain dimensions along the homogeneous
and inhomogeneous directions, are

L = N∆x = 0.512m 2L = 1.024m

As already said in Chapter 2 the code works with non-dimensional quantities.
The reference length LR is defined as the ratio of the homogeneous dimension
length L to 2π, LR = L/2π. The physical domain non-dimensional lengths, in
the homogeneous and inhomogeneous directions respectively, are

L̃ = 2π 2L̃ = 4π

The main geometric data are shown in table 4.1. The initial homogeneous and
isotropic turbulent velocity field is generated randomly in a cube in accordance
with the energy spectrum and the root mean square of the initial velocity
imposed by the user (see the initial energy spectrum in figure 4.2). The energy
spectrum defines how the energy is distributed on the wavenumbers. In this
project only the smallest scales of the inertial range and the scales in the
dissipation range are taken into account. The turbulent kinetic energy E is
calculated from the energy spectrum E(k)

E =
∫ ∞

0
E(k)dk

The energy dissipation spectrum D(k) is related to the energy spectrum by
the following equation

D(k) = 2νk2E(k) (4.1)
where k is the wavenumber and ν is the kinematic viscosity of air. From the
equation 4.1, the dissipation rate ϵ is obtained

ϵ =
∫ ∞

0
D(k)dk

The turbulent velocity field in the other cube is obtained by multiplying the
generated velocity field by a constant value. The constant value is chosen in
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Figure 4.2. The figure shows the initial three dimensional energy spec-
trum, which is built according to the user’s directives. The energy
maximum is at the wavenumber k = 8.

accordance with the required energy gradient. In this work the initial energy
gradient is

E1

E2
= 6.7

where the highest energy field (E1) is in the cloud region. The energy spectrum
are the same in the two homogeneous and isotropic turbulent fields and so it
is the integral length scale. It is important to define the integral scale eddy
turnover time, τ . The eddy turnover time is the characteristic time associated
with that eddy, in particular in our case, the eddy turnover time is associated
to the integral scale eddy. In non-dimensional terms the characteristic time τ̃
is defined as

τ̃ = l̃

ũ′

where l̃ is known from the energy spectrum and ũ′ ∼ 1. The initial velocity
field data are shown together with the non-dimensional integral length scale
l̃, the Taylor microscale λ̃ and the eddy turnover time in the table 4.1. The
simulation parameters are shown in table 4.2. The Reynolds number Recode,
that has to be set as a parameter, is calculated with the reference quantities
and it is defined as

Recode = URLR

ν
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Environment data
T0 281 K
p0 88000 Pa

Geometric and initial data
N 512
N3 1024
∆x 0.001 m
L 0.512 m

LR 0.082 m

l̃ 0.39
λ̃ 5.39 × 10−2

Ẽ 3.84
ϵ̃ 13.82
τ̃ 0.39

Table 4.1. The table shows the environment temperature and pressure at
around 1000 m above the sea level. The main geometric data and the data
relative to the initial conditions are also shown in this table. The values with
the tilde are non-dimensional

Simulations data
Saturated case Supersaturated case

Ntimestep 6500 6500
∆t̃ 10−4 10−4

Recode 1000 800
Rel 390 312
Reλ 53 43
Sc 0.61 0.61

Scmod 1.4 1.4
Pr 0.71 0.71
Fr 0.18 0.18

Ndrops 3840000 3840000
Rin 2.5 µm 2.5 µm

Table 4.2. The table shows the data used for two different simulations car-
ried out in this project, one of them studies a supersaturated cloud region
while the other analyse a saturated cloud region. Ndrops is the total initial
number of water droplets while Rin is their initial radius.
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From the Recode, the Reynolds number relative to the integral length scale Rel

and the one relative to the Taylor microscale Reλ can be obtained as follow

Rel = u′l

ν
= Recodel̃ũ′ Reλ = u′λ

ν
= Recodeλ̃ũ′

where the tilde symbol ∼ indicates non-dimensional quantities. In order to
have a stable simulation, an appropriate time step ∆t must be chosen such
that a fluid particle moves only a fraction of the grid cell in a time step ∆t.
An estimate of the Courant number for a typical DNS is given by (Pope, 2000)
and the stability condition is approximately

k1/2∆t

∆x
= 1

20

where k is the turbulent kinetic energy and it is k1/2 ∼ u′. The number of
eddy turnover time scale, nτ , that has been simulated can be computed from
the values of the total number of time steps Ntimestep and the time step ∆t̃

nτ = Ntimestep∆t̃

τ̃
= 6500 · 10−4

0.39 ∼ 1.7

where the τ̃ is the non-dimensional eddy turnover time (see table 4.1). Almost
two time scales are simulated. The Froude number is very low, this indicates
that the flow simulated is strongly stratified. An initial monodisperse homo-
geneous distribution of water particles is taken into account. The droplets are
initially distributed only in the cloud region and their initial radius is Rin = 2.5
µm. The domain volume in the cloud region is Vcloud = 51.23, so the water
particles number density is ndrop ∼ 29 1/cm3. Two different simulations was
carried out in this project. They differ in the Reynolds number (see table 4.2)
and in the initial water vapour density profile (see figure 4.3). In the first
simulation the cloud region is supersaturated (see the vapour density profile
in figure 4.3 (a)), while in the second simulation the cloud region is just satu-
rated (see vapour density profile in figure 4.3 (b)) Both simulations studies an
unstable stratification according to the initial temperature perturbation of the
atmospheric standard temperature gradient. The figure 4.4 shows the temper-
ature perturbation at the cloud-clear air interface. The cloud region is warmer
than the upper region (environmental air). This is a reason for instability, due
to the buoyancy effect. As already mentioned in the Chapter 2, in this work a
the time decaying turbulent shearless mixing layer is simulated. The produc-
tion of turbulent kinetic energy is not taken into account and only the gradient
of energy between the two HIT (homogeneous and isotropic turbulence) fields
is considered, while the integral length scale is the same in the whole domain.
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Figure 4.3. The figure shows the initial water vapour density profiles for the
supersaturated (a) and the saturated (b) cases. In the figures φ is defined as
the ratio of the vapour density at the temperature T to the saturated vapour
density at the same temperature φ = ρv(T )/ρvs(T ).
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Figure 4.4. The initial temperature profile. The temperature variation, ∆T ,
at the cloud-clear air interface is (T − T0)/T0 ∼ −0.012.

The results for the turbulent velocity field, which are shown below, are re-
ferred to the saturated case, the case with the highest Reynolds number, but
the statistic trend is the same of the lower Reynolds case. In figure 4.5 the
time decay of the mean value of the energy associated with the component
of velocity u3, in the x3 inhomogeneous direction. The figure was obtained
by averaging the energy on each plane normal to the inhomogeneous direction
and then by plotting u′2

3 (x3). Other informations about the turbulent mixing
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Figure 4.5. The figure shows the time decay of the energy associated with
the velocity component in the inhomogeneous direction, u′2. The time range
is from t/τ = 0 to t/τ = 1.7. This results has been obtained for Reλ = 53.

layer simulated can be obtained by the statistics analysis of the velocity field.
In particular the focus is on the analysis of the normalized third (skewness)
and fourth (kurtosis) single-point moments of the velocity components and of
the longitudinal velocity derivative. The skewness and kurtosis for example of
a velocity component u, are defined as

Su = u′3

u′23/2

Ku = u′4

u′22

where the overline indicates the spatial average on the planes at constant x3
(direction normal to the mixing layer). In figure 4.6 (a) the skewness of the
velocity component u3 is shown, while in figure 4.6 (b) the kurtosis of the same
velocity component is shown. Outside the mixing layer the skewness value os-
cillates around the zero while the kurtosis around the value 3. Since S = 0
and K = 3 are the values of the Gaussian distribution which describes the
homogeneous and isotropic turbulent field, the small oscillation around S = 0
and K = 3 confirms the fact that the two turbulent field are initially homo-
geneous and isotropic. In the mixing region the skewness reach a maximum
(at t/τ = 0.77) which gradually decreases with time and moves towards the
low variance region, due to the initial energy gradient. The kurtosis shares the
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same trend of the skewness. The flow is largely intermittent and the positions
along x3 of the skewness, xs, and kurtosis, xk, maxima, moving towards the
low energy region, represent the penetration of the turbulent mixing. At xs

the turbulent kinetic energy flow is maximized and it occurs on a plane moving
gradually towards the low energy region. The longitudinal velocity skewness
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Figure 4.6. The figure shows the time evolution of the normalized
third and fourth order moments of the velocity component u3. Data
obtained for Taylor microscale Reynolds number Reλ = 53 and a time
range from t/τ = 0 to t/τ = 1.7.

and kurtosis in the inhomogeneous direction (normal to the mixing layer) is
shown in figure 4.7 while the longitudinal velocity skewness and kurtosis in
the homogeneous direction (parallel to the mixing layer) is shown in figure 4.8.
The longitudinal skewness in direction normal to the mixing layer (figure 4.7
(a)) shows a negative peak at the mixing layer. The opposite trend but less
intense is shown by the longitudinal derivative skewness in direction parallel to
the mixing (figure 4.8 (b)) where the peak is positive respect to the isotropic
value. In both cases the skewness maxima gradually move with time towards
the low energy region. In the same positions of skewness maxima, both the
longitudinal velocity derivative kurtosis normal to the mixing layer (figure 4.7
(b)) and the one parallel to the mixing layer (figure 4.8 (b)) show a positive
peak. Physically the departure of skewness from the isotropic values reduces
the compression on fluid filaments in the directions parallel to the mixing layer
while the filaments compression normal to the layer is enhanced respect to the
isotropy (Tordella & Iovieno, 2011). The time evolution visualization of the
turbulent kinetic energy flow field is shown, for the supersaturated case in fig-
ure 4.9 where the development of the mixing layer between two homogeneous
and isotropic turbulent fields is shown. The passive scalar turbulent trans-
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Figure 4.7. The figures show the time evolution of the skewness (a) and
kurtosis (b) of the longitudinal velocity derivative in direction normal to the
mixing layer, ∂u3/∂x3. Data obtained for Taylor microscale Reynolds number
Reλ = 53 and a time range from t/τ = 0 to t/τ = 1.7
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Figure 4.8. The figures show the time evolution of the skewness (a) and
kurtosis (b) of the longitudinal velocity derivative in direction parallel to the
mixing layer, ∂u2/∂x2. Data obtained for Taylor microscale Reynolds number
Reλ = 53 and a time range from t/τ = 0 to t/τ = 1.7.

port across the interface is also described. Two passive scalars are taken into
account: the temperature, T , and the ratio of the water vapour density to
the saturated vapour density at the same temperature, φ. The time evolution
of the mean values of the temperature and of the vapour density are shown
for the supersaturated case in figure 4.10 and for the saturated case in figure
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4.11. A slight widening of the mixing layer thickness can be observed as the
flow evolves in time. The increase of the layer thickness cannot be appreci-
ate much due to the short time range simulated which is less than two eddy
turnover time. The variance of the passive scalar θ is defined as θ′2 where
θ′ = θ − θ is the scalar fluctuation. The variance of the temperature field
and of the vapour density, obtained by averaging the square of their respective
fluctuation on each plane parallel to the interface, is shown in figure 4.13 for
the saturated case. The variance shows a high peak centred on the scalar in-
terface. The variance results for the supersaturated case show the same trend
of the saturated case (see figure 4.12). While the variance time evolution
is not affected by the energy gradient between the two turbulent regions, its
influence is evident in the higher order moments such that the skewness and
the kurtosis of the passive scalars. The figure 4.14 (a) shows, for the high
Reynolds number case (saturated case), the skewness of the temperature while
the temperature kurtosis is shown in figure 4.14 (b). These figures show two
peaks at the edges of the mixing layer. Between the two peaks both skewness
and kurtosis values are close to the Gaussian ones. This means that the pas-
sive scalar skewness and kurtosis evolution are characterized by two largely
intermittent fronts. The presence of two intermittent fronts is related to the
deformation of the initial plane interface, in particular they are located where
high scalar gradients are located. These results agree with those obtained by
Iovieno et al. (2014). The asymmetry in the skewness and kurtosis maxima lo-
cations is due to turbulent kinetic energy gradient. The same statistical trend
is shown in figure 4.15, which illustrates the skewness and kurtosis of the water
vapour density for the same simulation. From the comparison of the results
obtained for the saturated case simulation (see figures 4.15 and 4.14) with the
results obtained for the supersaturated case simulation (see figures 4.17 and
4.16), it can be seen that the two peaks relative to the two fronts, are smaller
leading to the conclusion that the Reynolds number affects the intensity of
the intermittency level, in particular the higher the Reynolds the larger is the
intermittency as shown by (Iovieno et al., 2014). An other difference is in the
extreme asymmetry in the skewness and kurtosis profiles of the temperature
and water vapour density for the supersaturated case simulation. The water
vapour density skewness and kurtosis (see figures 4.17 (a) and (b)) show that
the vapour fluctuations in the cloud region are really large. Maybe this very
high fluctuations intensity is due to the water droplets feedback on the vapour
density field. The same conclusions can be made for the normalized third and
fourth order moments of the temperature, which is affected by the condensa-
tion latent heat release. In the figures 4.18 and 4.19 the visualizations of the
temperature and the water vapour density fields at three different instants are
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shown respectively. In these figures the time evolution of the interface can be
seen together with the entrainment of the clear air into the cloud region.

4.1 Water droplets dynamics analysis
The two simulations carried out in this work describe two opposite situations.
In the first simulation the cloud region is saturated, φ = 1, and the clear
air region is subsaturated, φ = 0.6, while in the second simulation the cloud
region is supersaturated, φ = 1.2, and the clear air is subsaturated, φ = 0.8,
but with a higher water vapour density than it is in the other simulation.
The results obtained from the two simulations are shown in this section, in
particular the time evolution of the droplet size distribution and the clustering
(or preferential concentration) phenomenon are described. In figure 4.20 the
water droplets number distribution in the inhomogeneous direction x3 is shown.
At the initial condition the particles concentration is homogeneous, but after
around 0.77 τ large fluctuations in the number of water droplets can be seen.
The strongly oscillating droplet number profile does not vary with time after
around one eddy turnover time, giving some rough information about the
clustering phenomenon. While in the supersaturated case (see figure 4.20
(a)) some particles moves towards the clear air region, in the saturated case
(figure 4.20 (b)) not only the particles does not move to the subsaturated
region but many of them evaporate completely. The complete evaporation of
particles is evident from the narrowing of the droplets number profile, where
the narrowing is related to the entrainment of the clear and subsaturated air
at the interface. In order to have also some information on the liquid water
content distribution in the inhomogeneous direction, the liquid water total
volume was computed in each plane parallel to the mixing layer. The results
are shown in figure 4.21, where the liquid water total volume is calculated
by summing the volume of all the droplets that are in the plane at constant
x3 and using the non-dimensional normalized water particles radius. In the
supersaturated case the total volume in each plane increases with time due to
the condensation of water vapour, while the opposite trend can be seen in the
saturated case where the total volume in each plane reduces with time until
it reaches almost the zero value at t/τ = 1.7, due to the intense evaporation
experienced by the droplets when subsaturated air is entrained. The strong
reduction of water droplets radius with time and the intense evaporation that
occurs in the saturated case simulation are shown in figure 4.22 where the
droplets spatial distribution is illustrated at t/τ = 0, t/τ = 0.8 and t/τ = 1.7.
In figure 4.22 the particles colour indicates the non-dimensional and normalized
particle radius, R/Rin. Near the interface the particles radius is much smaller
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than the radius of droplets in the centre of the cloud region, far from the
interface. Furthermore it can be seen the reduction of the number of particles
near the interface due to their complete evaporation, caused by the strong
dilution due to the entrainment of subsaturated clear air into the cloud region
at the interface. The time evolution of the water droplets size distribution
for both the saturated and supersaturated cases is shown in figure 4.23. A
slight broadening of the water droplet size distribution with time can be seen
in both cases, but while in the supersaturated case (see figure 4.24 (a)) the
mean droplet radius increase from R/Rin = 1 to around R/Rin = 1.4, in the
saturated case (see figure 4.24 (b)) it decrease from R/Rin = 1 to around
R/Rin = 0.2. Since the figure 4.23 shows a global view of the time evolution
of the water droplets size distribution, but it does not show the shapes of the
size distributions, single water particles radii distributions are shown for the
supersaturated case in figure 4.25 and for the saturated case in figure 4.26.
As already mentioned in Chapter 2 and 3 the water droplets are advected by
the small scales of turbulence. The turbulent transport of the inertial particles
leads to a spatial preferential concentration of the droplets. In particular
water particles move towards region where the vorticity intensity is low. The
clustering phenomenon is a fundamental process in the warm rain formation
since it enhances the turbulent collisions between particles. It depends on
the droplets inertial response time to the turbulent velocity field changes. In
figures 4.27, 4.28 and 4.29 the water droplets spatial distributions, for the
supersaturate case, are shown together with the concentration of droplets in
three different slices at x3 = 3, x3 = 4 and x3 = 5, for the time instants t/τ = 0,
t/τ = 0.8 and t/τ = 1.7 respectively. As said before the water particles, due
to their inertia, are subject to the centrifugal forces and for this reason they
are pushed out from the region at high vorticity towards regions where the
vorticity intensity is lower. In figure 4.30 the overlapping of the water droplets
spatial distribution on the enstrophy flow visualization is shown at three time
instants t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). The enstrophy is defined
as the square of the vorticity ω2 and it gives informations on the vorticity
intensity level. The visualization in figure 4.30 confirms the facts that the
inertial particles concentrates in the low vorticity regions and it agrees with
the figure 3.3 in Chapter 3. The same visualization but for the saturated case
is shown in figure 4.31.
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(a) t/τ = 0

(b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.9. In the figure the energy field is shown at three time instants,
t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). Visualization obtained for a
Taylor microscale Reynolds number Reλ = 43
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Figure 4.10. The figures show the time evolution of the mean values of
temperature, T , (a) and of the ratio of water vapour density to saturated
vapour density, φ, (b) profiles for the simulation that studies a supersaturated
cloud region. Data obtained for Taylor microscale Reynolds number Reλ = 43
and a time range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.11. The figures show the time evolution of the mean values of
temperature, T , (a) and of the ratio of water vapour density to saturated
vapour density, φ, (b) profiles for the simulation that studies a just saturated
cloud region. Data obtained for Taylor microscale Reynolds number Reλ = 53
and a time range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.12. The figures show the time evolution of the variance of
temperature, T ′2, (a) and of the ratio of water vapour density to satu-
rated vapour density, φ′2, (b) profiles for the supersaturated case. Data
obtained for Taylor microscale Reynolds number Reλ = 43 and a time
range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.13. The figures show the time evolution of the variance of tem-
perature, T ′2, (a) and of the ratio of water vapour density to saturated
vapour density, φ′2, (b) profiles for the saturated case. Data obtained
for Taylor microscale Reynolds number Reλ = 53 and a time range from
t/τ = 0.13 to t/τ = 1.7.
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Figure 4.14. The figures show the time evolution temperature skewness (a)
and kurtosis (b). Data obtained for Taylor microscale Reynolds number
Reλ = 53 and a time range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.15. The figures show the skewness (a) and kurtosis (b) of the
ratio of the water vapour density to the saturated vapour density. Data
obtained for Taylor microscale Reynolds number Reλ = 53 and a time
range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.16. The figures show the time evolution temperature skewness (a)
and kurtosis (b). Data obtained for Taylor microscale Reynolds number
Reλ = 43 and a time range from t/τ = 0.13 to t/τ = 1.7.
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Figure 4.17. The figures show the skewness (a) and kurtosis (b) of the
ratio of the water vapour density to the saturated vapour density. Data
obtained for Taylor microscale Reynolds number Reλ = 43 and a time
range from t/τ = 0.13 to t/τ = 1.7.
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(a) t/τ = 0

(b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.18. In the figure the temperature field is shown at three time in-
stants, t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). Visualization obtained
for a Taylor microscale Reynolds number Reλ = 43
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(a) t/τ = 0

(b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.19. In the figure the water vapour density field is shown at three
time instants, t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). Visualization
obtained for a Taylor microscale Reynolds number Reλ = 43
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(b) Saturated case

Figure 4.20. The figures show the distribution of the number of the water
droplets in the inhomogeneous direction x3 for the supersaturated case (a)
and for the saturated case (b). The time range is from t/τ = 0 to t/τ = 1.7.
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(b) Saturated case

Figure 4.21. The figures show the distribution of the water droplets total
volume in the inhomogeneous direction x3 for the supersaturated case (a)
and for the saturated case (b). The time range is from t/τ = 0 to t/τ = 1.7.
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(a) t/τ = 0 (b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.22. The figures show the water droplets spatial distribution at
t/τ = 0, t/τ = 0.8 and t/τ = 1.7, for the saturated case. The dots show the
particles positions while the dots colour gives information on the particles
radius. The initial non-dimensional and normalized radius is R/Rin = 1.

50



4 – Results analysis and conclusion

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  1.1  1.2  1.3  1.4  1.5
R/Rin

P
D
F
/N

t/τ
0.3
0.5
0.8
1.0
1.3
1.7

(a) Supersaturated case

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
R/Rin

P
D
F
/N

t/τ
0.3
0.5
0.8
1.0
1.3
1.7

(b) Saturated case

Figure 4.23. The figures show the water droplets size distribution for
the supersaturated case (a) and for the saturated case (b). The initial
non-dimensional normalized radius is R/Rin = 1. The time range is
from t/τ = 0.26 to t/τ = 1.7.
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(b) Saturated case

Figure 4.24. The figures show the distribution function (cumulant) for
the supersaturated case (a) and for the saturated case (b). The initial
non-dimensional normalized radius is R/Rin = 1. The time range is
from t/τ = 0 to t/τ = 1.7.
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Figure 4.25. The water droplets size distributions are illustrated for the
supersaturated case. The single size distributions are shown at different
instants of time, from the top left downwards and then from the top right
downwards t/τ = 0.3, t/τ = 0.5, t/τ = 0.8, t/τ = 1, t/τ = 1.3, t/τ = 1.7.
The initial non-dimensional normalized radius is R/Rin = 1, the Taylor
microscale Reynolds number is Reλ = 43 and the initial water droplets
concentration is ndrops = 29 1/cm3.
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Figure 4.26. The water droplets size distributions are illustrated for the
saturated case. The single size distributions are shown at different instants
of time, from the top left downwards and then from the top right down-
wards t/τ = 0.3, t/τ = 0.5, t/τ = 0.8, t/τ = 1, t/τ = 1.3, t/τ = 1.7.
The initial non-dimensional normalized radius is R/Rin = 1, the Taylor
microscale Reynolds number is Reλ = 53 and the initial water droplets
concentration is ndrops = 29 1/cm3.
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(a) Water droplets spatial distribution
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(b) Water droplets concentration

Figure 4.27. The figure (a) shows the water droplets spatial distribution at
the initial condition t/τ = 0, while the figure (b) shows the droplets concen-
tration in direction x1 at three different positions along the inhomogeneous
direction, x3 = 3, x3 = 4, x3 = 5 at the same time instant.
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(a) Water droplets spatial distribution
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(b) Water droplets concentration

Figure 4.28. The figure (a) shows the water droplets spatial distribution at
t/τ = 0.8, while the figure (b) shows the droplets concentration in direction
x1 at three different positions along the inhomogeneous direction, x3 = 3,
x3 = 4, x3 = 5 at the same time instant.
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(a) Water droplets spatial distribution
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(b) Water droplets concentration

Figure 4.29. The figure (a) shows the water droplets spatial distribution at
t/τ = 1.7, while the figure (b) shows the droplets concentration in direction
x1 at three different positions along the inhomogeneous direction, x3 = 3,
x3 = 4, x3 = 5 at the same time instant.
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(a) t/τ = 0

(b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.30. In the figure the overlapping of the water droplets spatial dis-
tribution on the enstrophy flow is shown, for the supersaturated case, at three
time instants, t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). Data obtained
for a Taylor microscale Reynolds number Reλ = 43.
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(a) t/τ = 0

(b) t/τ = 0.8

(c) t/τ = 1.7

Figure 4.31. In the figure the overlapping of the water droplets spatial dis-
tribution on the enstrophy flow is shown, for the supersaturated case, at three
time instants, t/τ = 0 (a), t/τ = 0.8 (b) and t/τ = 1.7 (c). Data obtained
for a Taylor microscale Reynolds number Reλ = 53.
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Chapter 5

Conclusions

A simplified cloud-clear air interface is analysed through a DNS code. Two
simulations has been carried out which analyse one the supersaturate case and
the other the saturate case. In both cases the number of time steps is 6500,
which gives for a ∆t̃ = 10−4, a total time simulated of t = 1.7τ where τ is the
eddy turnover time relative to the eddy whose scale is equal to the integral
length scale. According to Vaillancourt & Yau (2000) the initial distribution
of water droplets causes large supersaturation fluctuations, this can explain
the strong asymmetry in the temperature and water vapour density skewness
and kurtosis for the supersaturate case (see figures 4.17 and 4.16). The time
simulated is too low in order to appreciate an important widening of the mix-
ing layer and a significant entrainment of the clear air inside the cloud region.
Some effects of the entrainment, albeit small, can be seen in the total volume
distribution in the inhomogeneous direction for the saturate case and supersat-
urated case (see figure 4.21 (b)) where the entrainment of subsaturate clear air
cause the particles to evaporate and the volume distribution profile to shrink.
Another important result is the slight broadening of the droplet size spec-
trum. In real cloud a very large broadening of the droplets size spectrum was
observed. The broadening of the droplet spectrum according to Chandrakar
et al. (2016) is related to the initial aerosol concentration and it depends on
the supersaturation fluctuations. As already mentioned, in our work the time
simulated is too short to appreciate a significant size distribution broadening,
but it can be seen that in the saturate case all the particles undergo a strong
evaporation till the mean droplet radius reaches 0.2Rin after 1.7 τ , while the
opposite trend is shown in the supersaturate case, where the condensation al-
lows the particles to grow and the mean droplet radius after the same time
is 1.4Rin. Despite the short time simulation, it can be seen in the droplets
size distribution spectrum that the peak decrease with time, moving towards
larger radius values (supersaturate case) or smaller values (saturate case) and

60
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the distribution widens in both cases. In conclusion the clustering or preferen-
tial concentration is observed. A visualization of the enstrophy flow together
with the spatial inertial particles distribution, shows how the water droplets
concentrates in the low vorticity regions. In this work the nucleation has not
been taken into account and an initial monodisperse homogeneous drops dis-
tribution is considered with an initial radius of 2.5 µm. The water droplet
growth is due mainly to the condensation process. The particles are too small
for the collision-coalescence mechanism to be efficient. For future work, an
initial monodisperse droplets distribution of radius larger than 40 µm can be
considered and the collision-coalescence growth mechanism can be investigated
through the same DNS code and the resulting droplets size distributions can
be analysed.

61



Bibliography

Beard, KV & Ochs, HT 1993 Warm-rain initiation: an overview of microphysical
mechanism. F. Appl. Meteorol. 32, 608–25.

Blyth, A. M., Cooper, W. A. & Jensen, J. B. 1988 A study of the source of
entrained air in montana cumuli. J. Atmos. Sci. 45, 3944–3964.

Chandrakar, Kamal Kant, Cantrell, Will, Chang, Kelken, Ciochetto,
David, Niedermeier, Dennis, Ovchinnikov, Mikhail, Shaw, Raymond A.
& Yang, Fan 2016 Aerosol indirect effect from turbulence-induced broadening
of cloud-droplet size distributions. PNAS 113 (50), 14243–14248.

Devenish, B. J., Bartello, P., Brenguier, J. L., Collins, L. R.,
Grabowski, W. W., Ijzermans, R. H. A., Malinowski, S. P., Reeks,
M. W., Vassilicos, J. C., Wang, L. P. & Warhaft, Z. 2012 Droplet growth
in warm turbulent clouds. Quarterly Journal of the Royal Meteorological Society
138, 1401–1429.

Gallana, L., Savino, S. Di, Santi, F. De, Iovieno, M. & Tordella, D. 2014
Energy and water vapor transport across a simplified cloud-clear air interface. J.
Phys.: Conf. Series 547 (1), 012042.

Gerber, H., Frick, G., Malinowski, S. P., Brenguier, J-L. & Burnet, F.
2005 Holes and entrainment in stratocumulus. J. Atmos. Sci. 62, 443–459.

Gerber, H. E., Frick, G. M., Jensen, J. B. & Hudson, J. G. 2008 Entrain-
ment, mixing, and microphysics in trade-wind cumulus. Journal of the Meteoro-
logical Society of Japan 86A, 87–106.

Gotoh, Toshiyuki, Suehiro, Tamotsu & Saito, Izumi 2016 Continuous growth
of cloud droplets in cumulus cloud. New Journal of Physics 18.

Grabowski, Wojciech W. & Wang, Lian-Ping 2013 Growth of cloud droplets
in a turbulent environment. Annual Review of Fluid Mechanics 45, 293–324.

Heus, T., van Dijk, G., Jonker, H. J. J. & van den Akker, H. E. A. 2008
Mixing in shallow cumulus studied by lagrangian particle tracking. J. Atmos. Sci.
65, 2581–2597.

62



BIBLIOGRAPHY

Heus, T. & Jonker, H. J. J. 2008 Subsiding shells around shallow cumulus clouds.
J. Atmos. Sci. 65, 1003–1018.

Iovieno, Michele, Cavazzoni, Carlo & Tordella, Daniela 2001 A new
technique for a parallel dealiased pseudospectral navier-stokes code. Computer
Physics Communications 141, 365–374.

Iovieno, M., Savino, S. Di, Gallana, L. & Tordella, D. 2014 Mixing of a
passive scalar across a thin shearless layer: concentration of intermittency on the
sides of the turbulent interface. Journal of Turbulence 15 (5), 311–334.

Kumar, B., Schumacher, J. & Shaw, R. A. 2013 Cloud microphysical effects
of turbulent mixing and entrainment. Theoretical and Computational Fluid Dy-
namics 27, 361–376.

Lau, KM & Wu, H-T 2003 Warm rain process over tropical oceans and climate
implications. Geophys. Res. Lett. 30, 2290.

MacPherson, J. I. & Isaac, G. A. 1977 Turbulent characteristics of some cana-
dian cumulus clouds. Journal of Applied Meteorology and Climatology 16, 81–90.

Malinowski, S. P., Gerber, H., Plante, I. Jen-La, Kopec, M. K., Kumala,
W., Nurowska, K., Chuang, P. Y., Khelif, D. & Haman, K. E. 2013
Physics of stratocumulus top (post): turbulent mixing across capping inversion.
Atmospheric Chemistry and Physics .

Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous
turbulence and random flow fields. J. Fluid Mech. 174, 441–465.

Paoli, R. & Shariff, K. 2009 Turbulent condensation of droplets: direct simula-
tion and a stochastic model. F. Atmos. Sci. 66, 723–40.

PHILOFLUID 2016 Collision detection algorithm. https://areeweb.polito.it/
ricerca/philofluid/software/252-collision, accessed: 2018-03-09.

Pope, Stephen B. 2000 Turbulent flows, chap. 9. Cambridge University Press.

Pruppacher, H. R. & Klett, J. D. 1997 Microphysics of clouds and precipitation.
Dordrecht: Kluwer Acad.

Raes, F. 2006 Take a glass of water: concepts from physical chemistry used in
describing the behaviour of aerosol and cloud droplets. F. Phys. IV 139, 63–80.

de Rooy, Wim C., Bechtold, Peter, hlich, Kristina Frö, Hohenegger,
Cathy, Jonker, Harm, Mironov, Dimitrii, Siebesma, A. Pier, Teixeira,
Joao & Yano, Jun-Ichi 2013 Entrainment and detrainment in cumulus con-
vection: an overview. Quarterly Journal of the Royal Meteorological Society 139,
1–19.

63

https://areeweb.polito.it/ricerca/philofluid/software/252-collision
https://areeweb.polito.it/ricerca/philofluid/software/252-collision


BIBLIOGRAPHY

Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Ann. Rev.
Fluid Mech. 35, 183–227.

Shaw, R. A., Reade, W. C., Collins, L. R. & Verlinde, J. 1998 Preferential
concentration of cloud droplets by turbulence: effects on the early evolution of
cumulus cloud droplet spectra. J. Atmos. Sci. 55, 1965–1976.

Sidin, R. S. R., IJzermans, R. H. A. & Reeks, M. W. 2009 A lagrangian
approach to droplet condensation in atmospheric clouds. Phys. Fluids 21, 106603.

Siebert, H., Lehmann, K. & Wendisch, M. 2006 Observations of small-scale
turbulence and energy dissipation rates in the cloudy boundary layer. Journal of
the Atmospheric Sciences 63, 1451–1466.

Siebert, H., Shaw, R. A. & Warhaft, Z. 2010 Statistics of small-scale velocity
fluctuation and internal intermittency in marine stratocumulus clouds. Journal of
the Atmospheric Sciences 67, 262–273.

Squires, P. 1958 Penetrative downdraughts in cumuli. Tellus 10, 381–389.

Stevens, Bjorn 2005 Atmospheric moist convection. Annual Review of Earth and
Planetary Sciences 33, 605–43.

Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate
asymptotics of shear-free turbulent transport and diffusion. Journal of Fluid Me-
chanics 549, 429–441.

Tordella, Daniela & Iovieno, Michele 2011 Small-scale anisotropy in turbu-
lent shearless mixing. Physical Review Letters 107, 194501.

Tordella, Daniela, Iovieno, Michele & Bailey, Peter Roger 2008 Suf-
ficient contition for gaussian departure in turbulence. Physical Review E 77,
016309.

Tritton, D. J. 1988 Physical Fluid Dynamics, chap. 14. Oxford:Oxford Science
Publications.

Vaillancourt, P. A. & Yau, M. K. 2000 Review of particle-turbulence interac-
tions and consequences for cloud physics. Bull. Am. Meteorol. Soc. 81, 285–298.

Vaillancourt, P. A., Yau, M. K., Bartello, P. & Grabowski, W. W. 2002
Microscopic approach to cloud droplet growth by condensation. part ii: Turbu-
lence, clustering and condensational growth. J. Atmos. Sci. 59, 3421–3435.

Vaillancourt, P. A., Yau, M. K. & Grabowski, W. W. 2001 Microscopic
approach to cloud droplet growth by condensation. part i: Model description and
results without turbulence. Journal of the Atmospheric Sciences 58, 1945–64.

64



BIBLIOGRAPHY

Vohl, O., Mitra, S. K., Wurzler, S. C. & Pruppacher, H. R. 1999 A wind
tunnel study of the effects of turbulence on the growth of cloud drops by collision
and coalescence. J. Atmos. Sci. 56, 4088–4099.

65


	Introduction
	Warm cloud dynamics
	Turbulence role in clouds
	Cloud-clear air interaction through turbulent transport
	Simplified model of a cloud-clear air interface
	Turbulent shearless mixing in stratified flows


	Cloud microphysics
	Numerical model for water droplet dynamics simulation
	Collision detection algorithm


	Results analysis and conclusion
	Water droplets dynamics analysis

	Conclusions

		Politecnico di Torino
	2018-03-15T14:54:07+0000
	Politecnico di Torino
	Daniela Tordella
	S




