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Abstract
In this work, the reconstruction of sub-grid scales in large eddy simulation (LES) of tur-
bulent flows in stratocumulus clouds is addressed. The approach is based on the fractality
assumption of turbulent velocity field. The fractal model reconstructs sub-grid velocity
field from known filtered values on LES grid, by means of fractal interpolation, pro-
posed by Scotti and Meneveau (Physica D 127, 198–232 1999). The characteristics of the
reconstructed signal depend on the stretching parameter d, which is related to the fractal
dimension of the signal. In many previous studies, the stretching parameter values were
assumed to be constant in space and time. To improve the fractal interpolation approach,
we account for the stretching parameter variability. The local stretching parameter is cal-
culated from direct numerical simulation (DNS) data with an algorithm proposed by Mazel
and Hayes (IEEE Trans. Signal Process 40(7), 1724–1734, 1992), and its probability den-
sity function (PDF) is determined. It is found that the PDFs of d have a universal form when
the velocity field is filtered to wave-numbers within the inertial range. In order to investi-
gate Reynolds number (Re) dependence, we compare the inertial-range PDFs of d in DNS
and large eddy simulation (LES) of stratocumulus cloud-top and experimental airborne data
from Physics of Stratocumulus Top (POST) research campaign. Next, fractal reconstruction
of the subgrid velocity is performed and energy spectra and statistics of velocity increments
are compared with DNS data. It is assumed that the stretching parameter d is a random vari-
able with the prescribed PDF. We show that the agreement with the DNS is in such case
better and the error in mass conservation is smaller compared to the use of constant values
of d. The motivation of this study is to reproduce effect of sub-grid scales on a motion of
Lagrangian particles (e.g. droplets) in clouds.

Keywords Fractal interpolation technique · Turbulence · Large Eddy simulation ·
Sub-grid scale model · Lagrangian particles

� Emmanuel O. Akinlabi
emmanuel.akinlabi@fuw.edu.pl

1 Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
2 Max-Planck Institute for Meteorology, Hamburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10494-019-00030-2&domain=pdf
http://orcid.org/0000-0002-4267-4674
mailto: emmanuel.akinlabi@fuw.edu.pl


294 Flow, Turbulence and Combustion (2019) 103:293–322

1 Introduction

Lagrangian tracking of particles in turbulent flows seen in nature requires huge computa-
tional resources because the flow of a carrier fluid is spatially and temporally complex, with
structures in a wide range of scales. The ratio between the largest and smallest scales of
turbulence (Re ≈ L/η) observed in such flows can be as high as 109. The most detailed
research tool, which can resolve all turbulent scales and accurately predict particle trajecto-
ries, is the DNS [1]. Owing to its unrealistic computational cost at high Reynolds numbers,
LES is used as a compromise to calculate the large scale features (resolved) of the flow
while sub-grid (unresolved) scales are modelled. Lack of sub-grid scales or sub-grid scale
model errors will lead to the progressive divergence of particle trajectories when compared
with those obtained in experiment or DNS [2, 3]. As a result, particle statistics such as pref-
erential concentration, average settling velocity and relative velocities are either over- or
under-estimated [4–10].

Several attempts have been made to develop models for the effects of sub-grid scales
of turbulence on the prediction of the Lagrangian dispersion of inertial particles. As classi-
fied by [3], there are stochastic and structural models. Stochastic models are based on the
solutions of the Langevin equations [11–14] supplemented with a stochastic Wiener pro-
cess term [15, 16]. Various works on stochastic models show that they perform well at small
Stokes number but have strong sentivitity to the filter size [3, 17].

Structural sub-grid models are an alternative to the stochastic models and they aim at
mimicking (some of) the subgrid scales in a statistical sense. These models allow for the
approximate reconstruction of two-point particle statistics at the subgrid scale [8, 9, 18].
Example of structural models are the fractal interpolation [2, 19, 20], approximate decon-
volution (ADM) [21–24], spectrally optimized interpolation [25], the kinematic simulations
based on Fourier modes [26–29] and low-order dynamical systems [68]. A good structural
sub-grid model should not only be able to capture the statistics of small scales but also
be computationally efficient and easy to use. Fractal interpolation technique (FIT) seems
promising (especially for high Re geophysical applications) with respect to these features.
FIT was introduced to construct synthetic, fractal subgrid-scale fields applied to LES of
both stationary and freely decaying isotropic turbulence [20]. The underlying assumption
of the model is the existence of fractal-scale similarity of velocity fields. An attribute of the
constructed sub-grid velocity depends on the stretching parameter d, which is related to the
fractal dimension of the signal. In Scotti and Meneveau [20], it was assumed that d is con-
stant in space and time for homogeneous and isotropic turbulence. Basu et al. [30] proposed
an extension of this work by developing a multiaffine fractal interpolation scheme with
bi-valued stretching parameter and showed that it preserves the higher-order structure func-
tions and the non-Gaussianity of the PDF of velocity increments. They performed extensive
analyses on atmospheric boundary layer data and argued that the multiaffine closure model
should give satisfactory performance in LES. Marchioli et al. [2] used fractal interpola-
tion and approximate deconvolution technique to model sub-grid scale turbulence effects
on particle dynamics in wall-bounded turbulence. They showed that FIT appears to be inef-
ficient in reintroducing the fluid velocity fluctuation when a constant stretching parameter
is assumed [31]. They concluded that an accurate sub-grid model for particles may require
information on the higher-order moments of the velocity fluctuation [2].

Characteristic features of atmospheric turbulence are the inhomogeneity due to buoyancy
and the presence of internal and external intermittency. Internal intermittency means that
large velocity gradients are present at small scales and the PDF of velocity differences at
high Reynolds number are stretched-exponential at small scales [32]. External intermittency
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refers to the co-existence of both laminar and turbulent regions in the flow. These attributes
make it difficult to synthesize sub-grid velocity field using fractal interpolation since the
local stretching parameters have been shown to change randomly in space and time [2, 33].

The aim of this work is to develop an improvement to FIT, which can be used as a closure
model for Lagrangian tracking of particles in moderate or high Reynold number (com-
plex) turbulent flows. We proceed by accounting for the spatial variability of the stretching
parameter: first, its local value is computed with a method proposed by Mazel and Hayes
[34]. Then, the PDF of local stretching parameter is used to construct subgrid velocity,
starting with the filtered DNS or LES. Three examples of complex turbulent flows are inves-
tigated, first moderate Reynolds number DNS velocity field of stratocumulus-top boundary
layer (STBL) [35], second, LES of stratocumulus cloud at Re comparable with atmo-
spheric turbulence [36] and, finally, experimental data from POST airborne measurements
in stratocumulus clouds [37–39].

The extracted data of PDF of d are used to perform 3D reconstruction of subgrid eddies.
Performance of the new approach is compared with FIT with the constant stretching param-
eter values from Ref. [20] and the multiaffine fractal interpolation scheme [30]. We calculate
energy spectra of the reconstructed velocity field and the statistics of velocity increments.
The focus on the statistics of velocity increments is motivated by their ability to quantify
internal intermittency of small scale turbulence [32, 40, 41], which can influence inertial
particle statistics in turbulent flows [40, 42, 43]. We found the new approach with random
d the most favourable in terms of the investigated statistics. It reproduces the Kolmogorov’s
−5/3 scaling of turbulent kinetic energy spectra in the inertial range with the smallest
error and without spurious modulations. Moreover, PDFs of increments of the reconstructed
velocity have non-Gaussian, stretched-exponential tails.

This paper is structured as follows: Section 2 describes the FIT and method for stretching
parameter estimation from 1-D velocity series. Section 3 discusses briefly the DNS, LES
and POST airborne datasets of stratocumulus cloud [36, 39, 44]. Section 4 compares the
PDF of local stretching parameter for the three datasets. In Section 5, FIT is applied to 1-D
filtered DNS velocity field. The PDF of velocity increments of the reconstructed field and
PDF of DNS velocity increments are compared. In Section 5 the application of the improved
FIT to POST airborne measurement and 3-D LES velocity field is also presented.

2 Fractal Interpolation Techniques

2.1 Basics

The fractal interpolation technique is an iterative affine mapping procedure to construct the
synthetic (unknown) small-scale eddies of the velocity field u(x, t) from the knowledge of
a filtered or coarse-grained field ũ(x, t) [20]. For clarity, if ¯̃u(x, t) have resolution �′ while
ũ(x, t) have � such that �′ > �, the mapping operator W [.] applied to ¯̃u(x, t) gives ũ(x, t)
= W [ ¯̃u(x, t)]. To generate synthetic small scale velocity fields, the mapping is performed
many times i.e. a fractal synthetic field

uf (x, t) = lim
n→∞ W(n)[ũ(x, t)] ≡ lim

n→∞ W [W [W ...W [ũ(x, t)]...]].

For example, if we consider three interpolating points {(xi, ũi ), i = 0, 1, 2}, the fractal
interpolation reconstructs a signal wj , j = 1, 2 at two additional points placed between
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points 0 and 1 and points 1 and 2, see Fig. 1. Here, wj has the following transformation
structure:

wj

(
x

u

)
=

[
aj 0
cj dj

](
x

u

)
+

(
ej

fj

)
, j = 1, 2 (1)

with constraints

wj

(
x0
ũ0

)
=

(
xj−1
ũj−1

)
and wj

(
x2
ũ2

)
=

(
xj

ũj

)
, j = 1, 2 (2)

The parameters aj , cj , ej and fj can be written in terms of dj (called the stretching
parameter) and the interpolation points {(xi, ũi ), i = 0, 1, 2}. Values of dj fix the vertical
stretching of the left and right segments at each iteration and determine characteristics of
the reconstructed signal. Their values are independent of the interpolation points.
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Fig. 1 Different stages during the construction of a fractal function with stretching parameter d = ±2−1/3

after a 0,1 and 2 reconstruction steps b 0, 4 and 10 reconstruction steps
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The iterative procedure in the limit n → ∞ creates a continuous function uf (x) provided
that the stretching parameter dj obeys 0 ≤ |dj | < 1. Also, if |d1| + |d2| > 1 and (xi, ũi ),
are not collinear, then the fractal dimension D of the reconstructed signal is the unique
real solution of |d1|aD−1

1 + |d2|aD−1
2 = 1 (for proof, see [45]). Thus, once the stretching

parameter is chosen, the remaining parameters aj , cj , ej and fj are given as

aj = xj − xj−1

x2 − x0
(3)

ej = x2xj − x0xj

x2 − x0
(4)

cj = ũj − ũj−1

x2 − x0
− dj

ũ2 − ũ0

x2 − x0
(5)

fj = x2ũj−1 − x0ũj

x2 − x0
− dj

x2ũ0 − x0ũ2

x2 − x0
(6)

Given that

1 <

N∑
j=1

|dj | < 2, (7)

where N + 1 = NA and NA is the number of anchor points (here, N = 2), the stretching
parameter dj relates to the fractal dimension D of a velocity field as:

D = 1 + logN

N∑
j=1

|dj | (8)

(for proof, see [19, 45]). It is important to note that the relation between the fractal dimen-
sion and the inertial-range self-similarity of turbulent velocity field is not trivial. Orey [46]
proved that almost all realizations of a Gaussian random field with a power-law spectrum,
E(k) ∼ k−α with 1 < α < 3, give fractal dimension D = (5−α)/2. For Kolmogorov spec-
trum, α = 5/3, which results in D = 1.67. Although turbulent velocity fluctuations are not
Gaussian, the high-Reynolds experimental results of Praskovsky et al. [47] and Scotti et al.
[48] agree with Orey’s theorem. They concluded that turbulent velocity fluctuations gives
a fractal dimension D 	 1.7 ± 0.05, which is close to D = 1.67 expected for Gaussian
signals.

If a fractal dimension of 5/3 relating to −5/3 Kolmogorov scaling in the inertial-range
of velocity fields is assumed, then dj = ±2−1/3 (if dj is assumed to be the same for all grid
spacings) [20]. Figure 1 shows the 1-D construction of wj . We start from a field with three
grid points and we successively apply the map wj with stretching parameter dj = ±2−1/3.
Shown are the initial field, first, second, fourth and the tenth application of the map wj . The
energy spectrum after ten reconstruction steps is shown in Fig. 2.

In 3-D, FIT is performed separately along x-, y- and z- directions, see [20]. Let us assume
that the filtered field has N grid points in all three directions that is, we have ũijk for
i, j, k = 0, 1, 2, ..., N − 1. First, 1-D intersections of the coarse-grained field ũijk along
x- direction are created and FIT is performed for each 1-D intersection (see the blue lines
on the schematic Fig. 3), that is, for each j, k = 0, 1, ..., N − 1. We obtain a field which
we denote by ũx

ijk , where i = 0, 1, ..., 2N − 1, j, k = 0, 1, ..., N − 1. Then, FIT for each

1-D intersection of ũx
ijk along y- direction is performed, which gives a field ũx,y

ijk , where
i, j = 0, 1, ..., 2N − 1, k = 0, 1, ..., N − 1 (red lines in Fig. 3). Lastly, FIT is performed on
ũx,y

ijk along z- direction similar to how it was performed in x- and y- directions. With this,
the field uijk , where i, j, k = 0, 1, ..., 2N − 1 is finally obtained.
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Fig. 2 Energy spectrum of the reconstructed signal after 10 iterations showing −5/3 slope

2.2 Stretching parameter estimation

Mazel and Hayes [34] proposed an algorithm for computing the local stretching parameter
di of any given arbitrary dataset. The algorithm is based on the property that the result-
ing fractal field is self-similar. For illustration, if we consider a dataset with 5 interpolation

Fig. 3 Schematic picture of a process of the fractal reconstruction in 2D
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points {(xi, ui), i = 0, 1, 2, 3, 4}, let μ be the vertical distance between the middle inter-
polation point (x2, u2) and a straight line between the end points (x0, u0) and (x4, u4),
see Fig. 4. The value of μ is positive if the interpolation points are above the straight
line and negative otherwise. Let ν1 be the vertical distance between (x1, u1) and a straight
line between (x0, u0) and (x2, u2) while ν2 be the vertical distance between (x3, u3) and a
straight line between (x2, u2) and (x4, u4). Both ν1 and ν2 are positive if their respective
interpolation points are above their respective straight lines and negative otherwise. Then
the stretching parameters d1 and d2 are ν1/μ and ν2/μ, respectively. An illustration of this
calculation is presented in Fig. 4.

To see how the local values of d vary in space (or time), we applied this algorithm on a 1-
D intersections of DNS velocity field of STBL (see Section 3.1 for details of this simulation)
[33]. Figure 5a shows the local values of d. We see a significant variation of d, with some
values outside the interval (−1, 1), due to the intermittent nature of turbulent velocity fields.
To verify the applied procedure, we reduced the resolution of the signal from � to 2� and
apply FIT (as described in Section 2.1) once with local values of d as given in Fig. 5a. As
expected, the FIT constructed signal is identical with the original one, see Fig. 5b.

As described in Section 2.1, to assure continuity of the reconstructed signal in the limit
of n → ∞ reconstruction steps, d should take values within the interval (−1, 1). In order
to satisfy this condition, we further place a constraint |d| ≤ 1 in the calculation of local
stretching parameters and neglect d values outside this interval.

3 Test Cases

The stratocumulus clouds have been a major focus of research in the atmospheric turbulence
community because of its huge impact on the Earth’s radiative balance. This type of clouds
covers about one-quarter of the Earth’s surface. The turbulence is driven by convective
instabilities and large shear forcings [38, 49, 50]. Below, we provide a brief description of
DNS, POST airborne campaign and LES of stratocumulus cloud top.
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3.1 DNS of stratocumulus-top boundary layer

The DNS aim to mimic the top of the stratocumulus cloud (see Fig. 6). This restricted region
was considered uniquely so as to avoid the huge computational cost required to simulate
the whole boundary layer. The simulation settings aim to reproduce the cloud dynamics, as
measured during the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-
II) field study [51], with Re number being the only parameter which does not match the
experimental data, due to extensive numerical cost of the DNS. Details of the simulations
can be found in [50].

The cloud-top mixing layer has two infinite horizontal layers of moist air: the lower
region, which is cool and saturated and the upper region, which is warm and unsaturated.
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Fig. 6 Logarithm of enstrophy (� = 1/2|ω|2 where ω is the vorticity field). a Vertical cross
section at y = 405m. b Horizontal cross section at z = 550m [50]

Cloud turbulence is driven by convective instability caused by longwave radiative cooling
of the upper region of the cloud. Other sources of forcings are wind-shear effects induced
by a velocity variation of 3 m s−1 along the cloud-top region and the evaporative cooling
induced by the mixing of cloudy and environmental air [52]. The upward radiative flux F0
which characterizes radiative cooling and the radiative extinction length L0 are estimated
from the DYCOMS-II field study as, respectively F0 = 70W/m2 and L0 = 15m. With
this, the reference buoyancy flux equals B0 = F0g/(ρcpT0) = 0.002m2/s3, where g is
the gravitational acceleration, ρ is the density of the air, cp denotes the air’s heat capacity
and T0 is the reference temperature. The Reynolds number based on these scales is Re =
U0L0/ν = 800 where the reference velocity scale U0 = (B0L0)

1/3 = 0.3 m s−1. Here the
kinematic viscosity ν = 0.0056m2/s is almost 400 times larger than the air’s viscosity. For
a later comparison with LES study and measurements, we calculate Reynolds number based
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on the Taylor microscale Reλ = u′λ/ν, where u′ is the turbulence intensity. The Taylor
microscale λ is related to the dissipation of the turbulence kinetic energy ε by the formula
λ = [15νu′2/ε]0.5, see [53]. In the in-cloud region u′ ≈ 0.3m/s and ε ≈ 0.6 · 10−3m2/s3,
see [50], which gives λ ≈ 3.5m and Reλ ≈ 190.

The horizontal size of the computational domain is 54L0 which is discretized with
5120 × 5120 × 2048 points in x- (streamwise), y- (spanwise) and z- (vertical) directions.
This ensures the fine resolution of the flow down to the smallest dissipative eddies with
a characteristic size η0 	 10 cm. The simulation is statistically homogeneous in the hor-
izontal x and y directions. The statistics at these horizontal planes depend on the vertical
coordinate z and time t . Figure 6 shows the vertical cross-section (at y = 405 m) and hori-
zontal cross-section (at z = 550 m) of the logarithm of enstrophy (i.e. � = 1/2|ω|2 where
ω is the vorticity field). Turbulence statistics, that is, the mean streamwise velocity compo-
nent, r.m.s. of horizontal (u′, v′) and vertical (w′) velocity fluctuations and the budget of
turbulence kinetic energy are presented in Fig. 7.

3.2 POST airborne data

To investigate further the variability of the stretching parameter in high Reynolds turbulence,
we compute d from the airborne data. We use high-resolution in situ measurements of wind
velocity fluctuations (time signals) from one of the flight segments in the stratocumulus top
boundary layer. This segment was a part of flight 13 of the POST research campaign [37, 39]
carried out in the vicinity of Monterey Bay in July and August 2008 (the data are available
online via https://www.eol.ucar.edu/projects/post/). The signal’s sampling frequency was
40 Hz (corresponding to ∼ 1.4 m spatial resolution) and the duration was T = 438.75 s. The
magnitude of the vector difference between the wind and aircraft velocity, averaged over the
track vector, was 55ms−1 and the turbulence intensity u

′ = 0.28ms−1. Turbulence kinetic
energy dissipation rate was estimated from the power spectral density and the second-order
structure function in Ref. [38]. For the flight 13 the average value in the well-mixed cloud
top layer was ε = 0.55 · 10−3m2/s3. The kinematic viscosity at the flight height was ν =
1.46 · 10−5m2/s. With this, the Taylor microscale equals, approximately λ ≈ 0.19m and
Reλ ≈ 3900 is around 20 times larger than in the DNS described in Section 3.1.

3.3 LES of stratocumulus-top boundary layer

The large eddy simulation of stratocumulus top boundary layer for POST flight 13 [36]
was performed with a simplified version of 3-D non-hydrostatic anelastic Eulerian-semi-
Lagrangian (EULAG) model [54] without sub-grid scale (SGS) model (also called implicit
LES). In implicit LES, the truncation terms of the numerical scheme account for the effect of
unresolved turbulence. In previous works [55–57], it was shown that implicit LES performs
comparable to conventional LES (with SGS model). The code solves the three velocity
components (
u = (u, v,w)) in x−, y− and z− directions with other atmospheric vari-
ables such as potential temperature θ etc. The velocity components were advected using the
Multidimensional Positive Definite Advection Transport Algorithm (MPDATA) [58].

The computational domain is 3 km in x and y directions and 1.2 km in z direction
with a grid resolution of 5 m in each directions. The flow is periodic across the horizon-
tal boundaries and impermeable free slip condition is applied at the upper boundary. The
lower boundary is impermeable with partial slip conditions imposed through near-surface
momentum fluxes. The initial vertical profile of u and v velocity components were set to
the geostrophic wind Ug = 5.0 m s−1 and Vg = −7.0 m s−1, respectively. The time step δt
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Fig. 7 Some statistics of
velocity field in the cloud-top
mixing layer. The upper
horizontal line indicates the
height of minimum buoyancy
flux (horizontal plane
z = 585 m) while the lower
horizontal black line indicates
the height of maximum
buoyancy flux (horizontal
plane z = 540 m) [50]
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was chosen such that the maximum value of the Courant number throughout the simulation
period and computational domain is ∼ 0.5. For details, readers are referred to Pedersen et al.
[36]. Figure 8 shows u velocity component along the horizontal and vertical cross-sections
of the flow field. The cloud top region is placed at the vertical height z ∼ 700 m. Above this
region is the free troposphere, which is warm and unsaturated with low turbulence intensity
while the region below the cloud top is moist, saturated with high turbulence intensity. Ver-
tical profile of mean velocity field and r.m.s. of horizontal and vertical velocity fluctuations
are shown in Fig. 9.

4 Probability Distribution Function of the Stretching Parameter

In this section, we analyse available data of velocity field from numerical simulations
and experiment described in Section 3. We extract stretching parameters, as discussed in
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Section 2.2 and calculate the PDFs of the module of |d|, denoted as f (|d|). Here, d stands
for the sample space variable of the stretching parameter d.

4.1 DNS of stratocumulus-topmixing layer

For the DNS data described in Section 3.1, we use horizontal profiles of the u, v and w

components of velocity at a height corresponding to the in-cloud region (z = 550m). First,
we investigate the variability of d as 1-D intersections of DNS velocity field are filtered
successively to wavenumber in the inertial range. Starting with the fully resolved DNS field
with the grid spacing equal to η0, we reduce the resolution to 2η0 by using a low-pass filter
and calculate the local values of d for the filtered velocity field. Then, the velocity signal is
filtered to a grid resolution of 4η0 etc., the cut-off wavenumber is decreased, until the res-
olution matches the inertial-range (at about 16η0 to 128η0). After each filtering, the local
values of d are extracted. The low-pass filter used is the finite impulse response (FIR) filter
of order 30 designed using the Hamming window method [59]. This is done with decimate
function in MATLAB� software. We use the decimation low-pass filter because it is con-
structed to downsample the signal (i.e reduce the number of grid points) and guard against
aliasing. The downsampling feature of the filter was important to have a reconstructed signal
with the same number of grid points as the original (DNS, LES or POST airborne) signal.
We calculate the local estimate of d with the algorithm explained in Section 2.2. Stretching
parameter values outside the interval (−1, 1) were neglected and absolute value of d was
used to calculate its PDF. Since the flow is statistically homogeneous over horizontal planes
similar results were obtained for 1D intersections of velocity field calculated either in x- or
y- directions.

Figure 10 presents the PDF of |d| and average fractal dimension of DNS velocity signals
at different grid resolutions. In Fig. 10a, the PDFs change significantly for the first four
successive filtering steps but seem to be self-similar when filtered successively to inertial-
range wavenumbers (at steps 4 to 7). All three velocity components give similar profiles of
the PDF of the stretching parameter. The average fractal dimension, calculated according
to Eq. 8, decreases to 5/3 inertial range scaling, as seen in Fig. 10b. The calculated vertical
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Fig. 10 a PDFs of the absolute value of stretching parameter for horizontal profile of DNS velocity at
different resolutions. b The average fractal dimension for horizontal profile of DNS velocity at different
resolutions. The black line shows the value corresponding to the −5/3 inertial-range scaling

profile of averaged |d| across the STBL (see Fig. 11b) is smaller than 0.6 or 0.7 reported in
Ref. [31] even in the core cloud region (at z ≈ 550 m). We expect this result follows from
the presence of external intermittency (laminar regions will give zero or close to zero local
values of d). Even in the in-cloud region the volume fraction occupied by turbulent flow is
smaller than one and equals approximately γ = 0.9 − 0.95, where γ is the intermittency
parameter, see [60]. Due to small values of γ in the outer-cloud regions, the average value
of d also decreases therein to, approximately 0.25, see Fig. 11b.

In Ref. [20], it was shown that a fractal signal will only dissipate energy in the limit of
small viscosity if |d| > 0.5. So as to retain dissipative properties, we neglect |d| < 0.5
in further sub-grid scale reconstruction in Section 5.1. If only |d| > 0.5 is considered, the
average stretching parameter will be similar to values obtained in Ref. [31].
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No self-similarity of PDFs of |d| is observed in the vertical z- direction, see Fig. 11a.
Here, velocity field was filtered to a grid resolution of 16η0 or 32η0. This is due to the
anisotropy of turbulence caused by large scale shear production and buoyancy. Similar con-
clusion was made by Marchioli et al. [2, 3] where the locally computed stetching parameters
varied significantly in the wall-normal direction. Also, in that study, the average stretch-
ing parameter was lower than that obtained experimentally from homogeneous isotropic
turbulence.

We observe no significant variation in the horizontally calculated average of d in the
in-cloud region - at 450m ≤ z ≤ 550m (see Fig. 11b). Hence, the remaining analysis
is based on the horizontal profiles in this region, where turbulence is close to isotropic.
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We also observe that probabilities of having positive or negative stretching parameter are
equal.

4.2 Comparison with LES and POST data

To investigate the variability of the stretching parameter in high Reynolds turbulence, we
compute d from LES field and from the POST airborne dataset using the Mazel and Hayes’
algorithm described in Section 2.2. We compare PDF of |d| from LES and POST data with
the respective profile from the DNS. DNS velocity field was filtered with the decimate func-
tion [59] (described in Section 4.1) to a spatial resolution of 16η0 (equivalent to 1.6 m). For
LES, we use the horizontal profile of u velocity component at z = 595m (corresponding to
the in-cloud region with the maximum turbulent intensity) to estimate stretching parame-
ters. Numerical scheme of LES introduces a spurious damping of the energy of the smallest
resolved scales [24]. In order to remove these effects, we filtered the LES velocity field with
the decimate function (described in Section 4.1), to a grid resolution of 20 m (corresponds
to inertial-range wavenumber) from its 5 m grid resolution. Another possibility, instead of
filtering, would be to recover the energy of the smallest scales using the approximate decon-
volution method - ADM (see [24] for details). Combining the ADM and the FIT is, however,
left for further work and we will not address this issue here. We did not filter the POST air-
borne data since its sampling frequency is within the inertial-range. All the three u, v and
w components of POST velocity dataset were combined to form a large dataset since their
individual PDF of |d| were similar.

As seen in Fig. 12 comparison between LES and DNS profiles is very good, in spite of
different Reynolds numbers of the two simulations. The PDF of |d| from POST data seems
to oscillate around the respective DNS profile. Some differences observed may be due to
the effect of large scale tendencies on measured airborne data and small scale measurement
noise. Based on the results shown in Fig. 12, we can conclude the PDF of the stretching
parameter in the inertial range is a universal function, independent of the Reynolds number.
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Fig. 12 Probability distribution of the absolute value of the stretching parameter |d| from filtered DNS, LES
velocity signals of stratocumulus cloud-top and POST data. DNS and LES velocity fields were filtered with
wavenumber within the inertial range
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5 Results

5.1 Fractal interpolation of filtered DNS

First, we filter 1D horizontal intersections of DNS velocity field at z = 550 m to a spatial
resolution of 16η0 ≈ 1.6m (which is within the inertial range) using the decimation function
described in Section 4.1. We next reconstruct sub-filter scales back to the resolution η0
using FIT. For this, we select the stretching parameter from its PDF calculated from the
DNS data, see Fig. 12, using the inverse transform sampling method [61]. The procedure is
briefly indicated as following

1. Calculate cumulative distribution function F(|d|) from the PDF f (|d]), as

F(|d|) =
∫ |d|

0
f (s)ds.

2. Calculate the inverse function F−1(y).
3. If y is a random number from uniform distribution [0,1] then d = F−1(y) is a random

number from the investigated PDF.

Apart from the mathematical constraint |d| ≤ 1, which assures the continuity of the
reconstructed signal at n → ∞ reconstruction steps [45], the second constraint, discussed
in Section 3.1 was related to the dissipative properties of the signal [48] and reads |d| >

0.5. Hence, in practice, in the reconstruction process, we only retained the values |d| that
were larger than 0.5. If selected |d| ≤ 0.5, the procedure was repeated and another random
value was chosen, till the condition 0.5 < |d| ≤ 1 was satisfied. Next, the sign of d was
selected randomly, such that the positive and negative d have equal probabilities. Under
such assumptions, the ensemble average 〈|d|〉 is comparable to values reported in Ref. [31]
and the scaling of the reconstructed energy spectra is close to the theoretical k−5/3. We
checked that using only one constraint, |d| ≤ 1, led to underprediction of the reconstructed
spectra. Hence, the choice 0.5 < |d| ≤ 1 seems the most favourable as it is supported by
the theoretical constraints [19, 48] and gives satisfactory results.

The inertial-range scale invariance is the property that directly relates to the idea of frac-
tality of velocity field. As seen in Fig. 10a, profiles of PDF f (|d|) collapse into one curve
only for cut-off wavenumbers from the inertial range. For this reason, the fractal recon-
struction of the dissipative part of the spectrum is not justified, as no self-similarity is
observed there. Instead, in the FIT reconstruction process, the inertial range was extended
down to η0 and properties of such an artificial velocity field were investigated. The lack
of the dissipative range could be a possible drawback if Lagrangian particles are tracked in
the reconstructed field. This would concern especially the motion of small-inertia particles
which are correlated with smaller eddies [14]. However, in practice, FIT in numerical sim-
ulations of high-Re flows will be restricted to a few reconstruction steps, due to increased
computational time. With this, reconstruction of the signal down to η0 will not be possible
and the smallest resolved scales will belong to the inertial range.

Figure 13 shows the longitudinal energy spectra E11(k) (for u velocity component along
x direction) of DNS, filtered and FIT-reconstructed velocity field for the three investigated
versions of the model: with d = ±21/3 as originally proposed by Scotti & Meneveau [20],
with d1 = −0.887, d2 = −0.676 as proposed by Basu et al. [30], and with the new proposal
with random d. As it is observed, in case of constant values of d, energy spectra exhibit peri-
odic modulations (see also figures 7 and 8 of [20]). Basu et al. [30] avoid this modulation
by applying the discrete Haar wavelet transform. FIT energy spectrum with constant values
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of d = ±21/3 is much lower in some wave-numbers than the −5/3 inertial-range scaling
(especially at wavenumbers close to the cut-off scale), although the upper envelope qualita-
tively follows the −5/3 inertial-range scaling. The FIT energy spectrum reconstructed with
constant values of d = −0.887, −0.676 has similar properties as the Scotti & Meneveau
approach, except that the range between the upper and lower envelope of the spectrum is
somewhat smaller. The FIT energy spectrum reconstructed with random values of d follows
the inertial-range scaling closer and shows no periodic modulation.

Next, we investigated statistics of velocity increments at two different points u(x+r, t)−
u(x, t). The sample space of velocity increment will be denoted by δu and the distance
between points by r = |r|. The tails of the PDFs of velocity increments in the isotropic tur-
bulence f (δu, r, t), can be approximated by the stretched exponentials, where the stretching
exponent varies monotonically from 0.5 for r in the dissipation range to 2 (which is a Gaus-
sian distribution) for r in the integral scale range, [62]. The non-Gaussianity of the PDFs
for small r indicates the presence of the internal intermittency, that is, the probability of
extreme events (large velocity differences) at these scales is much higher than predicted by
a Gaussian distribution.

Figure 14 presents the PDFs of velocity increment (δu) for DNS, filtered DNS and FIT
velocity signals with constant and random values of d for r = 128η0 and r = 64η0. To
increase the size of dataset used to calculate PDFs we considered both longitudinal (x) and
transverse (y) 1D intersections of the velocity field at z = 550 m and, additionally, averaged
results over all three velocity components.

All three FIT approaches presented in Fig. 14 compare well with the corresponding DNS
profiles. PDFs at r = 128η0 are clearly Gaussian, see [32, 41]. Differences are observed
when the distance r decreases to r = 8η0, 4η0 and 2η0, see Figs. 15, 16 and 17, respectively.
The PDFs of velocity increments are far from Gaussian and slightly skewed. The FIT model
with random d provides the best FIT with the DNS at smaller r .

We note here that r = 4η0 and 2η0 correspond to dissipative-range scales. The intermit-
tency at short r seems to be correctly reproduced, especially by the approach with random
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d, although in the reconstruction process, the dissipative range is not reproduced in any FIT
model. We report here this result which seems interesting, although somewhat unanticipated
at first sight.

5.2 Fractal interpolation of POST airborne data

In order to test the performance of our sub-grid model on high Reynolds number airborne
data, we use u component of velocity field from flight 13 in POST airborne research cam-
paign [37, 39]. The velocity signal was filtered with the decimation function (described in
Section 4.1) from its frequency of 40Hz to 10Hz (corresponding to the spatial resolution of
5.6 m ). The filtering was done to eliminate measurements errors at large frequencies. We
use this filtered signal as our reference velocity dataset to validate the performance of the
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FIT model. This dataset has a larger inertial range compared to DNS data analyzed earlier
(see Fig. 18a). The reference signal is filtered to a frequency of 2.5Hz (about 22.4 m spatial
resolution) and FIT with the random values of d from PDF (calculated from the reference
POST signal) is applied to reconstruct the sub-filter part of the dataset. It is important to
note that FIT can be carried out in time by replacing the spatial variable x in Eqs. 1 to 6
with time. The frequency spectra for the reference POST, filtered POST and FIT velocity
dataset are shown in Fig. 18a. Once again, we observe the approach with random d follows
the inertial-range scaling closer than the other two approaches.
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PDF
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Differences in the observed spectra are quantified as follows. Under the local isotropy
assumption and within the validity of the Taylor’s hypothesis, the energy spectra in the
inertial range can be converted to the frequency spectra, see e.g. [63]

Sth = C1

(
U

2π

)2/3

ε2/3f −5/3, (9)

where the constant C1 ≈ 0.49, U = 55ms−1 is the true air speed of the aircraft and ε is the
turbulence kinetic energy dissipation rate. The value of ε can be estimated from the linear-
least-squares fit procedure applied in a certian range of frequencies. In the present case, we
used f = 0.1Hz − 2.0Hz and calculated ε = 4.1306 × 10−4 m2/s3. Deviations of the
spectra reconstructed with FIT from the inertial-range scaling were quantified by δS defined
as

δS =
[∫ ∞

fcut

〈
(Sth − S(f ))2〉 df∫ ∞
fcut

〈
S2

th

〉
df

]0.5

(10)

where S(f ) is the FIT frequency spectrum and fcut = 2.5Hz is the cut-off frequency, i.e.
the frequency at which the fractal reconstruction is initiated. We obtained the following
values of δS

δS = 0.033 for FIT procedure with d = ±21/3

δS = 0.049 for FIT procedure with d = −0.887,−0.676
δS = 0.026 for FIT procedure with random d

The FIT model with random values of d reproduces the inertial range scaling with the
smallest error. Next, we compare the PDF of velocity increments for POST reference data,
filtered POST and FIT data with random values of d in Fig. 18b. The velocity increments
were calculated as u(t +τ)−u(t) with τ = 0.1 s. The PDF of velocity increments for POST
reference data and FIT data agree reasonably well.
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5.3 3-D fractal interpolation of LES

Next, fractal interpolation of three components of velocity in 3D using the random values
of d (from the PDF shown in Fig. 12) is performed. Each velocity component was filtered
with the decimate function (described in Section 4.1) to a grid resolution of 20 m from its
initial 5 m grid resolution to remove the smallest scales spuriously damped due to numer-
ical diffusion. Then, we perform a 3-D fractal reconstruction of inertial-range scales to a
grid resolution of 5 m (i.e. two reconstruction steps), as described in Section 2.1) without
considering any correlations which might exist between the directions.

Figure 19 presents contour plots of the longitudinal u velocity component at z =
595 m for filtered LES and FIT-reconstructed field. The addition of inertial-range sub-grid
structures in FIT velocity is clearly visible.
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Fig. 19 Contour plot of u velocity field a filtered LES velocity field, b velocity field of LES with FIT

Energy spectra of this field are presented in Fig. 20 and compared with the two other
FIT approaches with constant d. The deviations from −5/3 scaling were calculated from a
formula analogous to Eq. 10

δE =
[∫ ∞

kcut

〈
(Eth − E11(k))2〉 dk∫ ∞

kcut

〈
E2

th

〉
dk

]0.5

, (11)

where Eth is described by formula

Eth = C1ε
2/3k−5/3. (12)

With the fitting range k = 0.019m−1 − 0.044m−1, the value ε = 5.0299×10−5 m2/s3 was
estimated. The obtained results read

δE = 0.40 for FIT procedure with d = ±21/3,
δE = 0.52 for FIT procedure with d = −0.887,−0.676,
δE = 0.28 for FIT procedure with random d.

Here again, FIT with random values of d shows the best agreement with the −5/3
inertial-range scaling.
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Fig. 20 Longitudinal energy spectra of LES velocity field and FIT-reconstructed field with a constant
stretching parameter d = ±2−1/3, d = −0.88,−0.676 and random stretching parameters from PDF

Figure 21 presents the PDFs of velocity increments for u, v and w components, sepa-
rately, calculated at the distance r = 5m at horizontal plane z = 595m. We compare LES
(without filtering) with the FIT-reconstructed field. As it is seen, LES results are closer
to Gaussian, while PDFs calculated from the FIT-reconstructed field have the exponential
tails. This could be explained by the fact that the smallest resolved scales of LES are spu-
riously damped due to numerical diffusion, hence, the inertial-range intermittency is not
reproduced by LES velocity field.

As reported by [20], a limitation of the fractal model is that the sub-grid scale velocity
field is not divergence free due to the loss of the correlation between directions. To investi-
gate this issue, the error in mass conservation at different reconstruction steps is calculated.
For this, the following formula is used

δ∇u =
√√√√ 1

n · m · p

n∑
i=1

m∑
j=1

p∑
k=1

(∇ · 
u)2
ijk . (13)

where n, m, p is the number of grid points in x, y and z directions, respectively. The diver-
gence of velocity was calculated with the central difference scheme. Additionally, the error
in mass conservation is characterized by the quantity |max(∇ · 
u) − min(∇ · 
u)|. LES field
was filtered to kcut = 0.150, 0.075 or 0.037m−1, which corresponds to the grid resolution
of approximately 10, 20 and 40m, respectively. Next, the signal was reconstructed back to
the resolution 5m, which means that 1 FIT reconstruction step was applied to the signal with
kcut = 0.150m−1, 2 steps to the signal with kcut = 0.075m−1 and 3 steps to the signal with
0.037m−1. Results are presented in Table 1.

In theory, δ∇u should be zero but due to numerical errors, the divergence of LES velocity
fields are usually very small (not zero). We first note that, as seen in Table 1, there is a
difference in δ∇u of two orders of magnitude between LES and the filtered LES without
FIT reconstruction. In spite of this, filtered velocity fields are commonly used to do a priori
tests to estimate e.g. an effect of SGS models on particle statistics [14, 29, 64]. Each FIT
reconstruction step increases the error in mass conservation, however, after two steps δ∇u is
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Fig. 21 a PDFs of LES and FIT
velocity increments δu, b PDFs
of LES and FIT velocity
increments δv, (c) PDFs of LES
and FIT velocity increments δw.
FIT with random d was applied
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Table 1 Values of δ∇u for different kcut and different fields

Method kcut [m−1] Number of δ∇u |max(∇ · 
u) − min(∇ · 
u)|
reconstruction

steps

LES - no filtering 0.3 0 0.00003 0.00051

Filtered LES - no FIT 0.037 0 0.0036 0.0554

FIT with constant 0.150 1 0.0106 0.2023

d = ±2−1/3 0.075 2 0.0142 0.4379

0.037 3 0.0218 0.7189

FIT with constant 0.150 1 0.0066 0.1395

d = −0.887,−0.676 0.075 2 0.0097 0.2849

0.037 3 0.0156 0.6322

FIT with random 0.150 1 0.0064 0.1253

values of d 0.075 2 0.0087 0.2962

from PDF 0.037 3 0.0105 0.6052

still of the same order of magnitude as the error of filtered LES without reconstruction, at
least for the FIT method with random d and for FIT with constant d = −0.887,−0.676.

The difference between the maximum and minimum of the divergence of the velocity
fields is seen to be one order of magnitude larger if all FIT models are compared with filtered
LES. Of all FIT approaches, the new proposal with random values of d gives a smallest
value of δ∇u and |max(∇ · 
u) − min(∇ · 
u)|. Based on this result, we suggest that one or
two iteration steps of FIT to LES velocity field should not be exceeded to keep the error in
mass conservation at an acceptable level.

Next, we investigated computational cost of the FIT procedure applied to three velocity
components in 3D space. We perform one to four reconstruction steps. As presented in
Fig. 22, the computational cost (CPU time) of one, two or even three FIT reconstruction
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Fig. 22 Additional computational time required for fractal interpolation technique
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steps is small compared to the time needed for LES to resolve large scale features. This
shows that the newly proposed fractal model is not only able to reproduce inertial-range
eddies but is also computationally efficient.

6 Conclusions

In this work, a fractal model for the reconstruction of subgrid scales in large eddy simulation
is presented. For the reconstruction process, values of the stretching parameter d should be
specified. This parameter determines the characteristics of the reconstructed signal which
can be derived from its fractal dimension [20]. In previous works, the stretching parame-
ter was chosen to be constant in time and space. To account for its spatial variability, we
estimate the PDF of the absolute value of the stretching parameter |d| from DNS data of
stratocumulus-top boundary layer, LES data in the same flow configuration and, addition-
ally, measurement data from POST campaign. For this, 1D intersections of velocity field
are first low-pass filtered to certain cut-off wavenmbers. Next, an algorithm proposed by
[34] is used to compute the local values of d. It was found that if the cut-off wavenumbers
were in the inertial range, the PDFs of the stretching parameter collapsed into one curve,
independent of the Reynolds number.

Next, 1D intersections of filtered velocity field were reconstructed such that d is a ran-
dom variable with the prescribed, previously determined PDF. Performance of the new
approach was compared with FITs with constant values of d. It was shown the energy spec-
tra follow the −5/3 scaling more closely and have no spurious modulations if d is random.
Moreover, the non-Gaussian, stretched-exponential tails of PDFs of velocity increments are
reproduced corretly by the improved model. We investigated these statistics as they quantify
internal intermittency of small scale turbulence [32, 41].

The random stretching parameter is also used to construct unresolved scales of POST
airborne data (flight 13) and 3-D LES of stratocumulus-top boundary layer. Statistics of
velocity increments showed that the improved fractal sub-grid model is capable to reproduce
some of the sub-grid scale features, which might be lost due to finite grid resolution and
numerical effects in LES or finite sampling frequency of measurements.

In the case of LES filed, the fractal reconstruction was extended to three dimensions. The
divergence-free condition, which can be violated when using fractal interpolation technique,
was addressed. We observe that after two reconstruction steps, the error in mass conserva-
tion of the reconstructed field is of the same order of magnitude as the error of filtered LES
without reconstruction. Moreover, the computational cost required by FIT was compared
with the cost of LES without reconstruction. We conclude that, even with three reconstruc-
tion steps, CPU time of LES with FIT is of the same order of magnitude as the CPU time of
LES.

A perspective for a further study is to use this fractal model to reconstruct sub-grid scales
of a carrier fluid flow and study the motion of Lagrangian particles in atmospheric physics
applications, see e.g. [65–67].
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