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Abstract: In this work we study different techniques to estimate basic properties of turbulence, that
is its characteristic velocity and length scale from low-resolution data. The methods are based on
statistics of the signals like the velocity spectra, second-order structure function, number of signal’s
zero-crossings and the variance of velocity derivative. First, in depth analysis of estimates from
artificial velocity time series is performed. Errors due to finite averaging window, finite cut-off
frequencies and different fitting ranges are discussed. Next, real atmospheric measurement data are
studied. It is demonstrated that differences between results of the methods can indicate deviations
from the Kolmogorov’s theory or the presence of external intermittency, that is the existence of
alternating laminar/turbulent flow patches.

Keywords: turbulence; clouds; intermittency; turbulence kinetic energy; turbulence kinetic energy
dissipation rate

1. Introduction

Turbulence is the most common regime of fluid flow. It is characterised by its high rotationality,
enhanced mixing of mass, momentum and energy and, most importantly, a myriad of motions, called
eddies, of different length and time scales, strongly interacting with each other [1]. Turbulence is not
only a flow regime, but it is also a driving factor of transport and mixing and, hence, influences e.g., the
boundary layer formation and affects air pollution episodes [2]. While in many flows turbulence and
its effects can be investigated in a systematic way by controlled experiments, this is not the case for
atmospheric turbulence. Effects of turbulent transport and mixing in scales smaller than the gridbox of
numerical simulations are still major limitations in weather and climate simulations [3]. Despite many
airborne measurements and research campaigns our understanding of turbulence in free atmosphere
is still far from sufficient. Part of the problem is the limited amount of measurement data, another part
is measurement errors, and last but not least element is inadequate or unsatisfactory data analysis.

One of the reasons that atmospheric turbulence is still a major problem is that it is in general
neither stationary nor isotropic [4–6]. It can be generated by wind shear and/or buoyancy forces acting
locally (e.g., due to diabatic heating), can be transported by large scale flows and circulations, and
affected by stratification [7] as well as external intermittency (i.e., presence of alternating laminar and
turbulent regions). This fact affects estimates of turbulence properties from measurements as well as
deteriorates predictions of turbulence models [8].
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The simplest way to characterize turbulence, widely used in turbulence-closure models, is to
define characteristic velocity U and length L (or time T) scales of turbulent eddies. Two quantities
necessary to estimate them are the turbulence kinetic energy K and the turbulence kinetic energy
dissipation rate (EDR) ε. While K is determined mainly by the large, energy-containing eddies, ε is
defined as the rate of conversion of the turbulence kinetic energy into thermal energy, which takes
place at small scales. In atmospheric turbulence these scales are of order of milli- or centimeter, while
the resolution of signals available from airborne measurements is typically smaller by 3–4 orders
of magnitude.

In practice, ε can be estimated from measured signals based on the assumption of local isotropy
and the Kolmogorov’s hypotheses [9]. The second hypothesis states that in a certain range of
wavenumbers, called the inertial range, statistics of turbulence, such as the wavenumber spectrum
functions, have a universal scale-invariant form and are determined only by the rate of dissipation
ε. This allows to estimate EDR from the measured inertial-range part of the power spectrum of
velocity fluctuations. However, due to limitations of sensors, measurement errors and rapid changes
of atmospheric conditions along the flight track, ε estimates from airborne data are far from being
standard. It can be expected that different approaches used to estimate EDR will not respond identically
to various types of error. The first objective of the present paper is to test and compare different methods
to determine ε from experimental data. Using different estimates will help to reduce errors of the
calculated ε. Moreover, the aim of this work is to establish a list of guidelines to specify which method(s)
should be used under certain circumstances (e.g., in the case of low-frequency measurements or short
fitting ranges). In this study, we will analyse the standard methods for EDR estimate from power
spectra, second-order structure functions, as well as the recently proposed techniques based on the
number of signal’s zero-crossings and iterative methods ([10,11]). The iterative methods are based on
the second as well as the first Kolmogorov’s hypothesis. The first hypothesis states that at sufficiently
high Reynolds numbers statistics of small-scale motions have a universal form, uniquely determined
by ε and the molecular viscosity of the fluid ν. In the new method the missing, unmeasured part
of the spectrum is reconstructed down to the smallest dissipative eddies using the signal from the
resolved measurements.

All the techniques are tested first on the artificial velocity time series with the use of different
averaging windows, different cut-off frequencies and fitting ranges. Next, the same tests are repeated
on measurement data obtained during a horizontal flight through the stratocumulus cloud within the
POST (Physics of the Stratocumulus Cloud-Top) campaign [12–15].

Apart from the reduction of the statistical error, comparison between obtained results may deliver
new information on the properties of the investigated atmospheric turbulence, especially its deviations
from the Kolmogorov’s scaling and/or the presence of external intermittency. It is shown that in
the former case EDR estimated from the structure function and the iterative method are under or
over-predicted in comparison to the remaining results. On the other hand, under-prediction of the
zero-crossings indicate the presence of external intermittency or strong large-scale motions. This
fact is prospective for further applications, e.g., in the analysis of stratocumulus cloud turbulence,
as it could allow to detect anisotropic zones and the existence of non-turbulent flow patches due to
entrainment of clear-air or local relaminarisation [16]. We can expect, EDR estimates in such regions
are deteriorated [11], as the Kolmogorov’s assumptions are not satisfied.

The present paper is structured as follows, the applied methods are discussed in Section 2. Error
analysis of EDR estimates is described in Section 3 and results calculated from artificial and real
signals are presented in Sections 4 and 5, respectively. Detection of deviations from the Kolmogorov’s
scaling and the presence of external intermittency is investigated in Section 6. This is followed by the
discussion of the obtained results in Section 7 and the Conclusions.
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2. Description of Methods

2.1. Characteristic Scales of Turbulence

The turbulence kinetic energy K and the turbulence kinetic energy dissipation rate are defined,
respectively, as [17]

K =
1
2
〈uiui〉, ε = 2ν

〈
sijsij

〉
(1)

where sij = 1/2(∂ui/∂xj + ∂uj/∂xi), 〈·〉 is the ensemble average and ui = Ui − 〈ui〉 denotes the i-th
component of fluctuating velocity. With these two quantities characteristic velocity and length scales
can be estimated. Dimensional analysis provides [18]

U =
√
K, L = Cε

K3/2

ε
, (2)

where Cε was assumed constant till recent studies of J. C. Vassilicos [19] who generalized the Taylor’s
formula (2). Equation (2) can be considered as the rough estimate of turbulence properties and
are a basis of common turbulence models, which neglect the multiscale character of turbulence.
Apart from this, the dissipation ε and the kinematic molecular viscosity ν allow to estimate the
so-called Kolmogorov scales, i.e., the characteristic length, velocity and the time scales of the smallest
vortex structures

η = (ν3/ε)1/4, uη = (νε)1/4, τ = (ν/ε)1/2. (3)

These small scales are of utmost importance for the analysis of physical processes in clouds, as
they influence e.g., the collision frequency of water droplets and consequently the time needed for
precipitation to occur [20–22].

Since direct airborne measurements of the dissipation rate are not possible, the so-called indirect
methods are used. The basis for all the methods is the Kolmogorov’s local isotropy hypothesis [9],
which relies on the idea that anisotropy present at large scales is lost as the energy is transferred to
smaller eddies in the cascade process. As a consequence, two-point turbulence statistics at small scales
do not depend on the direction of the vector joining the two points, but only on its magnitude. With
this, it is possible to estimate the dissipation rate from 1D intersections of the 3D velocity field.

The Kolmogorov’s first similarity hypothesis divides the wavenumber space into the
energy-containing and the universal equilibrium range. Under the assumption of local isotropy
it was inferred that statistics of turbulent motions in the latter range have a universal form, uniquely
determined by ν and ε. With this, based on dimensional arguments the energy spectrum in the
equlibrium range can be described by the formula

E(κ) = ε2/3κ−5/3 f (ηκ), (4)

where κ is the wavenumber. The second similarity hypothesis divides the universal equlibrium range
into two sub-ranges: the dissipation and the inertial subrange. In the latter the statistics are uniquely
determined by ε, independent of ν, which suggests that f (ηκ) in Equation (4) becomes a constant and

E(κ) = Cε2/3κ−5/3. (5)

Hence, the idea of Kolmogorov enables to estimate ε and thus, the characteristic scales of small
eddies based on statistics of inertial-range motions. With this, the EDR of atmospheric turbulence can
be estimated from in-situ measurements even though the research aircrafts are often not equipped
to measure wind fluctuations with resolutions better than a few tens of meters. This length is much
above the typical millimiter-order Kolmogorov length.
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2.2. Estimation of EDR from 1D Intersections of the Turbulent Velocity Field

Atmospheric airborne measurements deliver information on 1D intersections of the turbulent
velocity field along plane tracks. From this, under the assumption of local isotropy and with the
Taylor’s frozen eddy hypothesis, information on turbulence statistics are extracted.

Two commonly used methods that follow from the the Kolmogorov’s second similarity
hypothesis [9] are the frequency, or wavenumber spectrum and the structure-function approach.
The one-dimensional frequency spectra of the longitudinal and transverse velocity components in the
inertial range are given by [17]:

S‖( f1) = CK

(
U
2π

)2/3
ε2/3 f−5/3

1 , S⊥( f1) = C′K

(
U
2π

)2/3
ε2/3 f−5/3

1 . (6)

Here f1 = Uκ1/(2π) and κ1 is the longitudinal component of the wavenumber vector, CK ≈ 0.49,
and C′K ≈ 0.65, U stands for the true air speed (the magnitude of the vector difference between the
aircraft velocity and the wind velocity). EDR is estimated from Equation (6) by fitting a line with −5/3
slope on a logarithmic plot within a certain range of frequencies, further called the “fitting range”, see
left panel of Figure 1. The log of the intercept is equivalent to

CK

(
U
2π

)2/3
ε2/3 or C′K

(
U
2π

)2/3
ε2/3,

respectively.
Alternatively, one can consider the second or the third order structure functions. As reliable

calculation of the latter demands large sample, which is often not accessible from airborne
measurements, the considerations will be restricted to the second order longitudinal or transverse
structure functions defined in the inertial range, respectively as

D‖(r) = 〈(ul(x + r, t)− ul(x, t))2〉 = C2ε2/3r2/3, (7)

D⊥(r) = 〈(un(x + r, t)− un(x, t))2〉 = C′2ε2/3r2/3, (8)

here ul and un are, respectively the longitudinal and transverse component of velocity and r is a
displacement along the direction defined by ul . We apply values C2 ≈ 2. and C′2 ≈ 2.86. Analogously,
EDR is estimated by fitting a line with a 2/3 slope on a logarithmic plot, see right panel of Figure 1.

In the previous works [10,11] alternative approaches to estimate EDR from low or
moderate-resolution velocity time series, based on zero-crossings and variance of velocity derivative
were proposed. The zero-crossings is calculated simply as the number of times the signal crosses
the level zero per unit length or per unit time. When a turbulent signal is analysed, the number of
zero-crossings per unit length is related to the Taylor’s microscale [23,24]. The first method is based
on the scaling of the number of crossings of a filtered signal as a function of cut-off frequency. The
formula for longitudinal velocity component reads [10]

u
′2
1 N2

1 − u
′2
i N2

i = 3CK

(
U
2π

)2/3
ε2/3

(
f 4/3
1 − f 4/3

i

)
, (9)

where fi, i = 1, . . . , n are cut-off frequencies that are placed within the inertial range, u′i, i = 1, . . . , n are
standard deviations of the filtered signal and Ni, i = 1, . . . , n is calculated as the number of times the
investigated, filtered signal crosses the level zero per unit time. If the transverse velocity component is
investigated, CK in the Formula (9) should by replaced by C′K. It was assumed in (9) that the filter is
perfectly rectangular in the Fourier space. Analogously to the previous methods, the value of EDR can
be estimated from Equation (9) by a proper curve-fitting, see the left panel of Figure 2.
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Figure 1. Left: Exemplary frequency spectra of the transverse velocity component from experimental
POST data [15], Right: Exemplary second-order structure function. Vertical lines indicate bounds of
the fitting range, magenta dashed line is a curve-fit within this range.

Yet another method proposed in Refs. [10,11] is based on an iterative procedure. The key idea is to
recover the part of the spectrum which is missing due to unsufficient resolution or measurement errors
using Equation (4) with a prescribed, analytical form of function f (ηκ), see the right panel of Figure 2.
Under the local isotropy assumption the EDR can be found from the variance of the derivative of the
measured, longitudinal fluctuating velocity component u′cut, having the spectral cut-off at κcut

ε = Cλν

〈(
∂u
′
cut

∂x

)2〉
CF , (10)

where the constant Cλ = 15 for the longitudinal and C′λ = 15/2 for the transverse velocity component.
Above, CF is a correcting factor which represents the unresolved part of the dissipation spectrum.
Alternatively, from the relation of [23]

〈(∂u′/∂x)2〉 = 〈u′2〉π2N2

the EDR can be expressed in terms of the number zero-crossings Ncut per unit length of the
filtered signal

ε = Cλπ2ν〈u′2cut〉N2
cutCF , (11)

For a filter perfectly rectangular in the Fourier space we have〈(
∂u
′
cut

∂x

)2〉
=
∫ κcut

0
κ2

1E11dκ1. (12)

while for the fully-resolved signal u′〈(
∂u
′

∂x

)2〉
=
∫ κcut

0
k2

1E11dκ1 +
∫ ∞

κcut
κ2

1E11dκ1. (13)

where E11(κ1) is the one-sided 1D velocity spectrum. The ratio of Equations (12) and (13) gives the
correcting factor CF . Unmeasured part of the spectral function E11(κ1) for κ1 ≥ κcut is replaced by
an analytical formula with the use of Equation (4) and a relationship between the one-dimensional
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spectra E11 and the spectral energy density E(κ). Finally, the formula for CF for longitudinal velocity
components reads, see Ref. [11]

CF = 1 +

∫ ∞
kcut βη ξ2

1
∫ ∞

ξ1
ξ−8/3 fη(ξ)

(
1− ξ2

1
ξ2

)
dξdξ1∫ kcut βη

0 ξ2
1

∫ ∞
ξ1

ξ−8/3 fη(ξ)

(
1− ξ2

1
ξ2

)
dξdξ1

. (14)

while for the transverse component we have

CF ′ = 1 +

∫ ∞
kcut βη ξ2

1
∫ ∞

ξ1
ξ−8/3 fη(ξ)

(
1 + ξ2

1
ξ2

)
dξdξ1∫ kcut βη

0 ξ2
1

∫ ∞
ξ1

ξ−8/3 fη(ξ)

(
1 + ξ2

1
ξ2

)
dξdξ1

. (15)

The function fη above is given analytically by the Pope’s model [17] for the dissipation range

fη(κη) = e−β
{
[(kη)4+c4

η ]
1/4−cη

}
, (16)

where β = 5.2, cη = 0.4. For this function the best fit with data from numerical experiment was
observed [11].

To estimate CF , it is necessary to calculate integrals with η in the integration bounds. As the
Kolmogorov lengthscale η depends on ε, see Equation (3), an iterative procedure is used to find the
final value of EDR. With a first guess of ε the correcting factor CF is calculated and introduced into (10)
to calculate new value of ε. The procedure can be continued until the condition ∆η = |ηn+1− ηn| < dη

for a given error value dη is satisfied. Interestingly, independent of the initial guess, results converge
very fast to the sought value of ε, see Refs. [10,11].

Figure 2. Left: Exemplary number of zero-crossing scaling calculated from experimental POST data,
for cut-off within the inertial range, see Equation (9), dashed magenta line indicates the best fit-line.
Right: Power spectra of a signal with spectral cut-off, magenta line indicates reconstructed part of
the spectrum.

The preliminary tests of the new method for EDR estimation were performed in Ref. [10] on the
data from Stratocumulus top measurement campaign (POST), (see Refs. [12,13,15]) and in Ref. [11]
on the numerical Direct Numerical Simulation (DNS) data of stratocumulus cloud-top. The results
show a good agreement with standard EDR estimates from Equation (5). A clear advantage of the
iterative methods is that, as the Formula (4) is universal, only the value of the effective spectral cut-off
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κcut should be given to estimate CF and ε from Equation (10). Additionally, it was argued in Ref. [10]
that the new methods respond differently to errors due to finite sampling and finite averaging window
than the standard spectral methods, e.g., they are less sensitive to the bias error. This, particularly for
the case of small sampling frequencies increases robustness of ε estimates. Within the present paper
we perform a more detailed study of the performance of all the above-described methods, first on
artificial and next on real signals.

2.3. External Intermittency

It was argued in Ref. [11] that the number of zero- crossings statistics can be used as an indicator of
external or global intermittency, that is, the existence of of laminar spots within the turbulent flow. Such
situation can be present e.g., at the top of a boundary layer, as intermittent turbulence-driven bursts into
the free troposphere [25] or the top of stratocumulus cloud due to entrainment of the cloud-free, laminar
air from above the cloud. Moreover, the presence of stable stratification which damps turbulent motions
can lead to partial re-laminarisation of the flow. The latter mechanism is observed also in large-scale
oceanic motions where the turbulence is anisotropic and of intermittent structure [26,27]. Large scale
intermittency of vertical velocity component was reported in Ref. [28] for stratified turbulence in a
distinct range of Froude numbers. A rough detection of external intermittency from measurement data
may help to better describe and quantify atmospheric and oceanic turbulence processes.

Detection of external intermittency usually involves a proper choice of an indicator function q, a
criterion function f (q) and a threshold level Th. The flow is assumed turbulent when f (q) > Th [29].
The time fraction when turbulent flow is detected is called the intermittency factor γ. It takes value
1 if the flow is fully turbulent, 0 if it is laminar and 0 < γ < 1 if it is intermittent. Examples of q are
the velocity derivative for 1D signals, enstrophy [16] when full 3D velocity field is known or density
in the case of stratified flows [30,31]. Another approach was proposed in Ref. [11]. Therein, it was
assumed that in the externally intermittent flow, the statistics will change to γ〈u2〉 and γ〈(∂u/∂x)2〉.
Moreover, as the laminar part of the signal does not significantly contribute to the number of crossings,
hence, γNL crossings per unit length will be detected in the intermittent signal. In such approximation,
the Taylor microscale (here, we consider the transverse microscale) will remain unchanged in the
intermittent flow

λnI =

[
γ〈u′2〉

γ〈(∂u′/∂x)2〉

]1/2

= λn, (17)

where the subscripts I are related to the statistics in the intermittent flow. On the other hand, the length
scale defined based on zero-crossings, the so-called Liepmann scale is modified to

ΛI =
1

γπNL
=

1
γ

Λ hence,
λnI
ΛI

= γ
λn

Λ
, (18)

This suggests that the ratio of the transverse Taylor to Liepmann length scales is an indicator of
the external intermittency. This also imposes, in case of external intermittency, the EDR estimated from
Equation (11) will be underpredicted in comparison to estimates based on power spectrum, structure
function or the variance of velocity derivative. If, on the other hand the λn/Λ ratio oscillates around a
value close to unity along the investigated signal, we can expect the flow is fully turbulent. Within this
work we calculate the λn/Λ ratio for artificial signals and compare it with the prescribed value of the
intermittency parameter γ.

3. Error Analysis of EDR Estimates

Due to the limitations of measuring sensors and rapidly changing weather conditions,
determination of ε from aircraft measurements is subject to errors, among others, due to the finite
frequency of measurements and a short averaging window. They cause modification of the energy
spectra and difficulties in estimating EDR on their basis. Finite windowing of the measured signal leads
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to a spectral leakage, i.e., the spectral energy connected with a given frequency “leaks” to different,
adjacent frequencies.

For the signal to be fully resolved the sampling frequency should be at least equal to twice the
reciprocal of the Kolmogorov’s time scale 2/τ. In practice, due to limitation of sensors, velocity in
airborne measurements is sampled with frequency fs which is smaller by 3–4 orders of magnitude.
This under-sampling creates aliases of the true spectrum [32–34] such that to the Fourier transform of a
sampled signal its n-th harmonics are added. With this, the spectral energy density of turbulence kinetic
energy deviates from the Kolmogorov’s −5/3 scaling within a certain range of frequencies. In most
applications, the region of spectrum most influenced by aliasing is skipped and the calculated spectrum
is fitted to the Kolmogorov’s formula in a reduced range of frequencies. This, as a consequence,
increases uncertainty of EDR estimates. Moreover, the optimal choice of the fitting range is not obvious
and highly case-dependent.

To test sensitivity of EDR retrieval methods we generated artificial velocity time series based on
the von Karman model spectrum [33,35,36] model, such that the one-sided frequency spectra of the
signals have a prescribed form

S( f ) ≈ C
2π

U
u′2L0[

1 + L2
0

(
2π f
U

)2
]5/6 , (19)

where C = CK ≈ 0.49 was assumed. Coefficients of the Fourier series expansion of velocity signal
were calculated as

wj =
√

Wj(a + ib) (20)

where i =
√
−1, a and b are random numbers from the standard Gaussian distribution with zero mean

and unit variance and Wj = S( f j)∆ f , j = 1, . . . , N. To test the proposed methods for EDR retrieval
we used L0 = 10 m, U = 55 ms−1 and u′ = 0.18 ms−1 in Equation (19). The length of the signal was
N = 216 points and the sampling frequency was fs = 200 Hz. The reference EDR calculated from
the theoretical profile (19) was εre f = 2.97× 10−4 m2/s3. We used this value to non-dimensionalze
results of EDR retrieval for the power spectra, number of crossings and velocity variance method.
The artificially generated signals may not reproduce all statistics of turbulent field correctly (this
problem was also mentioned in Ref. [36]), with (19) the EDR estimated from the structure function
were slightly different even for very large averaging windows, hence results for structure function
were non-dimensionalized with the slightly different εre f = 2.49× 10−4 m2/s3. A sample signal is
given at the upper plots in Figure 3.

In the next step, we considered real signals from the flight 13 of the CIRPAS Twin Otter research
aircraft, collected with sampling frequency fs = 40 Hz during the POST campaign [12–14]. In the
investigated horizontal segment atmospheric conditions remained approximately constant, the true
air speed (the magnitude of the vector difference between the aircraft velocity and the wind velocity),
was U = 55 ms−1, the turbulence intensity u′ = 0.35 ms−1, the sampling frequency fs = 40 Hz
and the length of the segment was N = 19,817 points, which corresponds to the total time of 495 s.
Here, for εre f (the same for all methods, including the structure function approach) we have chosen
estimation from the power spectra (6) with statistics averaged over the whole length of the signal
εre f = 7.96× 10−4 m2/s3.

To calculate EDR, the size of averaging window should first be estimated. It should be larger than
the turbulence characteristic eddy turn-over time Tch. We assume this time scale equals Tch = U/L,
where L and U are, respectively, the characteristic length and velocity scales of turbulence, estimated
as in the K− ε turbulence model [17]

L = Cµ
K3/2

ε
, U =

√
K =

√
3
2

u′, Tch =
L
U

. (21)
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Above, Cµ = 0.09 is the model constant. This length scale is around 10 times smaller than the integral
length scale L from Equation (2), as Cε ≈ 10Cµ. With the fixed size of the averaging window, running
averages are calculated along the signal and EDR is approximated based on the power spectrum
method (6), the structure function (7), number of crossings scaling in the inertial range (9), and the
iterative methods based on the velocity variance (10) and the number of crossings (11). The estimates
are denoted, respectively, as εPS, εSF, εNCF, εVAR and εNCR. For the investigated, artificial signals
Tch = 9.84 s which, for the frequency fs = 200 Hz corresponds to 2000 points, approximately. Sample
results of EDR estimates for the averaging window Tch/4 and Tch are presented in the middle and
bottom plots in Figure 3. It is observed, the latter results are obviously smoother. Here, the fitting
range f = [10÷ 20] Hz and the cut-off frequency for the iterative methods was fcut = 20 Hz. In
the tests we calculated the mean value and the standard deviation of such estimates for averaging
windows ranging from Tch/4 to 2Tch. Moreover, we reduced frequency of the signals by successive
downsampling. We also investigated influence of results for different choices of the fitting range and
the cut-off frequency. The filtering of the signal was performed with the the sixth order low-pass
Butterworth filter [37] implemented in Matlab R©.
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Figure 3. Top plots: Part of an artificial signal, middle plots: EDR estimates from the power spectrum
εPS, Equation (6), structure function εSF, Equation (7) and number of crossings scaling in the inertial
range εNCF, Equation (9), bottom plots: EDR estimates from the iterative method based on the velocity
variance εVAR, Equation (10) and the number of zero-crossings per unit length, Equation (11). Left
column: averaging window Tch/4, right column: averaging window Tch.

4. EDR Retrieval from Artificial Signals

4.1. Different Averaging Windows

In the first test we keep the sampling frequency fs = 200 Hz constant and vary the size of
averaging window. For this frequency, as the characteristic time scale Tch ≈ 9.84 s, the size of
averaging window changes from 2Tch, which corresponds to, approximately Nav = 4000 signal points
to Tch/4 which corresponds to approximately 500 points. The signal was fitted first within the range
f = [10÷ 20] Hz in case of εPS, εSF, εNCF estimates or low-passed filtered with the cut-off frequency
fcut = 20 Hz in case of iterative methods for εVAR and εNCR. Results are compared in Figure 4. It is
seen, the value of εSF, averaged along the signal is the least and the mean εPS the most affected by the
decrease of the size of the averaging window. The mean of εVAR also performs well in this test. The
right panel presents standard deviations of the estimates from their mean value The highest deviations
are observed for the methods based on the number of crossings, which is in line with preliminary
tests performed in Refs. [10,11] for εNCF. Next, the fitting range was changed by moving it towards
larger scales. Estimates for f = [5÷ 10] Hz and f = [1÷ 5] Hz are presented in Figures 5 and 6,
respectively. As it is seen, estimates from the second-order structure function become under-predicted.
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Other results remain comparable, also the difference of standard deviations of εNCF and remaining
methods is smaller for f = [1÷ 5] Hz.
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Figure 4. Statistics of EDR estimates for the fitting range f = [10÷ 20] Hz, or fcut = 20 Hz from
artificial signals with fs = 200 Hz. Left panel: EDR averaged along the signal, right panel: standard
deviation of the estimates. EDR estimates based on the power spectrum εPS, Equation (6), structure
function εSF, Equation (7), number of zero-crossings scaling in the inertial range εNCF, Equation (9),
iterative method based on the velocity variance εVAR, Equation (10) and the number of zero-crossings
per unit length, Equation (11).
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Figure 5. As in Figure 4, but for the fitting range f = [5÷ 10] Hz.
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Figure 6. As in Figure 4, but for the fitting range f = [1÷ 5] Hz.
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4.2. Different Averaging Windows and Different Sampling Frequencies

Next, we investigated in detail how different methods respond to changes of both, averaging
window and the sampling frequency. For this we successively downsampled the signal. For the fitting
range f = [10÷ 20] Hz it was done twice, to create signals with fs = 100 Hz and fs = 50 Hz. The
cut-off frequency in the iterative method was fcut = 20 Hz. The same tests were repeated for the fitting
range f = [5÷ 10] Hz or fcut = 10 Hz and in this case the downsampling could have been performed
three times, down to fs = 25 Hz. Finally, calculations for the fitting range f = [1÷ 5] Hz or fcut = 5 Hz
and fs = 200 Hz, 100 Hz, 50 Hz and 12.5 Hz were performed. We also note in passing that the moving
window of a fixed size, e.g., Tch correspond to 2000 signal points in case of fs = 200 Hz, to 1000 points
for fs = 100 Hz, and to 500 points in case of fs = 50 Hz.

4.2.1. Power Spectra

First, results of εPS estimated from the power spectra, Equation (6), are presented in Figures 7–9. It
is observed, the mean value of εPS (averaged along the signal) becomes over-predicted with decreasing
sampling frequency. This bias error follows from the aliasing (see discussion in Section 3) which leads
to deviation from the Kolmogorov’s −5/3 scaling, especially in the high-wavenumber part of the
spectrum. Standard deviation of εPS, presented in the right panels in Figures 7–9 is affected mainly by
the size of averaging window. Results become more scattered for smaller Tav.
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Figure 7. Statistics of εPS estimates based on the power spectra, Equation (6), for the fitting range
f = [10÷ 20] Hz, from artificial signals with fs = 200 Hz, 100 Hz and 50 Hz. Left panel: EDR averaged
along the signal, right panel: standard deviation of the estimates.
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Figure 8. As in Figure 7, but for the fitting range f = [5÷ 10] Hz.



Atmosphere 2020, 11, 199 12 of 22

 1

 1.2

 1.4

 0.25  0.5  1  1.5  2

<
 ε

>
/ε

re
f 
 

Tav/Tch

f=200Hz
f=100Hz

f=50Hz
f=25Hz

f=12.5Hz

 0.2

 0.4

 0.6

 0.25  0.5  1  1.5  2

s
td

 (
ε
/ε

re
f)
  

Tav/Tch

f=200Hz
f=100Hz

f=50Hz
f=25Hz

f=12.5Hz

Figure 9. As in Figure 7, but for the fitting range f = [1÷ 5] Hz.

4.2.2. Structure Functions

Next, results of estimates from the second-order structure function, Equation (7), are presented
in Figures 10–12. Interestingly, the mean values (left panels) are hardly influenced by the size of
averaging window or the sampling frequency, but they become under-predicted when the fitting range
is moved towards smaller wavenumbers (larger scales). The effect of aliasing is smaller and opposite
to the one seen in εPS—results decrease with decreasing fs. The standard deviations (right panels in
Figures 10–12) are not affected either by the sampling frequency or the choice of the fitting range. Here,
the values of standard deviations are smaller than respective results for εPS.
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Figure 10. Statistics of εSF estimates based on the second-order structure function, Equation (7), for the
fitting range f = [10÷ 20] Hz, from artificial signals with fs = 200 Hz, 100 Hz and 50 Hz. Left panel:
EDR averaged along the signal, right panel: standard deviation of the estimates.
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Figure 11. As in Figure 10, but for the fitting range f = [5÷ 10] Hz.
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Figure 12. As in Figure 10, but for the fitting range f = [1÷ 5] Hz.

4.2.3. Number of Zero-Crossings

Results of EDR estimated from the number of zero-crossing scaling in the inertial range,
Equation (9), are shown in Figures 13–15. While the sampling frequency decreases, the effect of
aliasing becomes visible—the averaged εNCF become over-predicted, but less than it was observed for
εPS. Moreover, the mean values tend to decrease with the decreasing size of the averaging window,
as it was observed for εPS. For the mean values, dependency on the fitting range is visible—results
become under-predicted (up to about 20%) when the bounds of the range are moved towards smaller
wavenumbers. The standard deviations of εNCF are larger than those of εPS and εSF.
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Figure 13. Statistics of εNCF estimates based on the number of zero-crossing scaling, Equation (9), for
the fitting range f = [10÷ 20] Hz, from artificial signals with fs = 200 Hz, 100 Hz and 50 Hz. Left
panel: EDR averaged along the signal, right panel: standard deviation of the estimates.
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Figure 14. As in Figure 13, but for the fitting range f = [5÷ 10] Hz.



Atmosphere 2020, 11, 199 14 of 22

 0.8

 1

 0.25  0.5  1  1.5  2

<
 ε

>
/ε

re
f 
 

Tav/Tch

f=200Hz
f=100Hz

f=50Hz
f=25Hz

f=12.5Hz

 0.4

 0.6

 0.8

 0.25  0.5  1  1.5  2

s
td

 (
ε
/ε

re
f)
  

Tav/Tch

f=200Hz
f=100Hz

f=50Hz
f=25Hz

f=12.5Hz

Figure 15. As in Figure 13, but for the fitting range f = [1÷ 5] Hz.

4.2.4. Iterative Method

Results for the iterative method εVAR based on the variance of velocity derivative are presented in
Figures 16–18. We omit here εNCR estimates, as the results are similar to εNCF (since both are based on
the zero-crossing statistics). The mean values presented in the figures differ, at most, by about 20%
from the reference value. This is less than maximal deviations observed for the mean values of εPS and
εSF. Moreover, the standard deviations of εNCR are comparable with those of εPS and εSF and smaller
than those of εNCF. Smaller bias and the scatter comparable to standard methods suggest the iterative
approach could be advantageous. However, when certain setting are considered, e.g., the fitting range
of f = [1÷ 5] Hz and fs = 50 Hz, results of εPS are closer to the reference value than εVAR, which are
biased when the fitting range is moved towards smaller frequencies.
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Figure 16. Statistics of εVAR estimates based on the variance of velocity derivative, Equation (10), for
the fitting range f = [10÷ 20] Hz, from artificial signals with fs = 200 Hz, 100 Hz and 50 Hz. Left
panel: EDR averaged along the signal, right panel: standard deviation of the estimates.
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Figure 17. As in Figure 16, but for the fitting range f = [5÷ 10] Hz.
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Figure 18. As in Figure 16, but for the fitting range f = [1÷ 5] Hz.

4.3. Deviations from the Kolmogorov’s Scaling

It can be argued that deviations between estimates of different methods indicate problems with
the size of averaging window, sampling frequency or the fitting range. However, when analysis of
signals from real measurements is performed, differences can exist even in case of sufficiently large
Tav and sufficiently high fs. This can be a result of deviations from the Kolmogorov’s scaling. To
investigate this issue we created artificial signals with the scaling larger or smaller than −5/3 ≈ −1.67,
by changing the 5/6 exponent in the denominator in Equation (19) to smaller/larger values. Mean
of EDR estimates for such signals are presented on the log plot in the left panel of Figure 19. As it is
observed, εSF deviates the most from results of other methods. It is larger for scaling exponents smaller
than−5/3 and smaller for scaling exponent larger than−5/3. Results of εPS and εNCF are very similar,
while εVAR lies between εSF and εPS. We also investigated the case of deviations of the Kolmogorov’s
constant CK in Equation (6) by changing the constant C in Equation (19). Over-prediction of this value
was observed e.g., in Ref. [11] for the spectra of the vertical velocity component. Results of estimates
are presented in the right panel of Figure 19. Here, no deviations between the methods are observed.
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Figure 19. Mean of EDR estimates for artificial signals which deviate from the −5/3 scaling (left panel)
or with deviations from the standard value of the Kolmogorov’s constant CK ≈ 0.49.

5. EDR Retrieval from POST Signals

Next, tests analogous to the ones described in the previous subsection were performed for a
signal from the POST campaign [12–15]. The frequency of the original signal was fs = 40 Hz. With
u′ = 0.35 ms−1 and εre f = 7.96× 10−4 m2/s3 the characteristic time estimated from Equation (21) is
Tch ≈ 21 s which corresponds to the moving window of 1200 points for fs = 40 Hz, 600 points for
a signal down-sampled once to fs = 20 Hz and 300 points for the signal down-sampled twice. For
the reference value εre f we chose the mean of εPS, averaged over the whole signal. Results for two
different fitting ranges f = [1÷ 5] Hz and f = [0.2÷ 5] Hz are presented in Figures 20–25. As the
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lower-bound of the fitting range was the same, results of εVAR are presented only once, for fcut = 5 Hz,
see Figure 26. The fact that this method does not depend on the upper-bound of the fitting range is an
advantage here. The observed trends are similar as for the artificial signals investigated in Section 4.
With decreasing fs an overprediction of mean value of εPS, up to about 100% is observed in Figures 20
and 21. Moreover, the mean EDR estimates decrease with decreasing size of the averaging window.
Smaller over-prediction (about 50%) of εNCF and εVAR is observed in Figures 24–26, respectively. On
the other hand, the values of mean εSF increase with decreasing Tav and become underpredicted when
the upper bound of the fitting range is moved towards larger scales. The highest standard deviation
(highest scatter) is observed for εNCF.
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Figure 20. Statistics of εPS estimates based on the power spectra, Equation (6), for the fitting range
f = [1÷ 5] Hz, from POST signals [15] with fs = 40 Hz, 20 Hz and 10 Hz. Left panel: EDR averaged
along the signal, right panel: standard deviation of the estimates.
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Figure 21. As in Figure 20 but for the fitting range f = [0.2÷ 5] Hz.
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Figure 22. Statistics of εSF estimates based on the structure function, Equation (7), for the fitting range
f = [1÷ 5] Hz, from POST signals [15] with fs = 40 Hz, 20 Hz and 10 Hz. Left panel: EDR averaged
along the signal, right panel: standard deviation of the estimates.
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Figure 23. As in Figure 22 but for the fitting range f = [0.2÷ 5] Hz.
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Figure 24. Statistics of εNCF estimates based on the number of zero-crossings, Equation (9), for the
fitting range f = [1÷ 5] Hz, from POST signals [15] with fs = 40 Hz, 20 Hz and 10 Hz. Left panel:
EDR averaged along the signal, right panel: standard deviation of the estimates.
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Figure 25. As in Figure 24 but for the fitting range f = [0.2÷ 5] Hz.
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Figure 26. Statistics of εVAR estimates based on the iterative method, Equation (10), for the fitting range
f = [1÷ 5] Hz, from POST signals [15] with fs = 40 Hz, 20 Hz and 10 Hz. Left panel: EDR averaged
along the signal, right panel: standard deviation of the estimates.

6. Intermittency in Atmospheric Turbulence

The last issue investigated within the present paper concerns the presence of laminar spots
within the turbulent flow. It was shown in the previous contribution [11] that the transverse Taylor to
Liepmann scale ratio λn/Λ (see Equation (18)) can be an indicator of external intermittency. We created
artificial signals with the spectra prescribed by Equation (19), setting the signal values to a constant
over some periods of time (see the upper plots in Figure 27). With this we knew the exact value of
the intermittency parameter γ. Values of γ and λn/Λ calculated for the whole signal are presented in
Table 1. Even for γ = 0.3 results compare well. The same estimates calculated for a moving window of
size 2Tch are presented in the lower plots in Figure 27. Deviations of the mean λn/Λ ratio from unity
are accompanied by underprediction of estimates based on the number of zero-crossings (see middle
plots in Figure 27.

Table 1. Intermittency parameter vs. Taylor-to-Liepmann scale ratio.

Signal Number 1 2 3 4

Intermittency parameter 0.84 0.69 0.60 0.30

λn/Λ 0.84 0.72 0.57 0.35
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Figure 27. Top plots: Part of an artificial signal, middle plots: ε estimates, bottom plots: Taylor-to
Liepmann scale ratio. Left column: signal with the intermittency parameter 0.69, right column: signal
with the intermittency parameter 0.84.
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Analogous study was performed for two sample signals from the POST campaign [15]. Results
for a horizontal segment of flight 13 are presented in the left panel in Figure 28. The signal recorded
during the flight through the cloud is fully turbulent and the mean λn/Λ ≈ 1. Right panel of Figure 28
presents analogous results for vertical cloud penetrations during the flight 3. Wind velocity was
measured with the frequency fs = 10 Hz. Here, the level of turbulence intensity changes along the
flight track and for the considered part of the signal, the calculated mean λn/Λ ≈ 0.8.
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Figure 28. Top plots: Part of the POST signals, middle plots: ε estimates, bottom plots: Taylor-to
Liepmann scale ratio. Left panel: horizontal segment of the flight 13, right panel: flight 3, signal
recorded during vertical cloud penetrations.

7. Discussion

Within the present work we investigated performance of different methods of EDR retrieval. We
argue, these techniques can be complementary as they respond differently to various types of error. It
was observed the power-spectra estimates are sensitive to the aliasing due to finite frequency and the
size of the averaging window. This method performed well for the fitting ranges moved towards the
small wavenumbers and is expected to give the best estimates in such a case. For the structure function
approach, on the other hand, the best results were obtained for fitting ranges moved towards higher
wavenumbers (smaller scales). This method appears to be the least sensitive to the finite frequency
and the size of averaging window. A clear advantage of the iterative methods proposed in Refs. [10,11]
is that, as the Formula (4) is universal, only the value of the effective spectral cut-off κcut = 2π fcut/U
should be given to estimate CF and ε from Equations (10) or (11). These methods are not sensitive
to the change of the lower bound of the fitting range. Mean results of εVAR εNCF estimates lie often
between εPS and εSF. They are less sensitive to the decrease of the averaging window size and aliasing
than εPS, and less sensitive to the change of the fitting range or cut-off frequency than εSF. Results
from the number of zero-crossing statistics have usually larger scatter than results of other methods.

In an ideal case results of all estimates should be comparable. It can be concluded from the results
of the tests that εSF tend to be under-predicted in comparison to other methods which can follow from
the choice of the fitting range or the aliasing which deteriorates results of εPS the most and less εVAR
and εNCF. To discuss this issue in more detail we present results of EDR estimates for flight 3 from
POST campaign [15], where the data were measured with the low frequency of 10 Hz and atmospheric
conditions varied considerably along the flight track. Even though the averaging window Tav = 10Tch
seemed sufficiently large, results of different methods deviate when the fitting range f = [0.5÷ 3.5] Hz
was chosen (see left panel in Figure 29). To minimize the effect of aliasing the fitting range for εPS and
εNCF was moved to f = [0.5÷ 2.5] Hz and fcut = 2.5 Hz for εVAR, whereas the fitting range for the
structure function was different and corresponded to f = [2÷ 5] Hz. Such choice should be acceptable,
as εSF was not sensitive to aliasing. As it is seen in the right panel in Figure 29, results compare much
better. Hence, it can be expected that a more reliable value of EDR can be obtained when different
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methods are compared, as it allows to adjust the bounds of the fitting ranges properly to minimize the
bias errors.
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Figure 29. EDR estimates for signals measured during POST flight 3 [15] with fs = 10 Hz. Left
panel: fitting range f = [0.5÷ 3.5] Hz and fcut = 3.5 Hz, right panel: fitting range corresponding to
f = [2÷ 5] Hz for εSF and f = [0.5÷ 2.5] Hz for εPS and εNCF, fcut = 2.5 Hz for εVAR.

Turbulence in the atmosphere is in reality often far from its idealised, textbook picture. It
is non-stationary, anisotropic and affected by buoyancy, local shear and external intermittency,
i.e. the presence of laminar patches within turbulent flow. If the fitting range and the averaging
window are chosen properly and differences between EDR estimates are still observed, the possible
reason are deviations from the Kolmogorov’s scaling. It was shown, especially εSF is in such case
under or over-predicted. On the other hand, under-prediction of estimates based on the number of
zero-crossings indicates the presence of external intermittency. Hence, deviations between the results
can deliver additional informations on the measured physical quantities.

With the developed algorithm for EDR retrieval, it is possible to analyse and compare data from
different research campaigns. Our aim is to investigate data from various sources, which will allow to
better characterize general characteristic features of a given flow type.
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PS power spectra
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