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ABSTRACT

In this work, direct numerical simulation (DNS) of the stratocumulus cloud-top mixing layer is used to test

various approaches to estimate the turbulence kinetic energy (TKE)dissipation rate « fromone-dimensional (1D)

intersections that resemble experimental series. Results of these estimates are compared with ‘‘true’’ (DNS)

values of « in buoyant and inhomogeneous atmospheric flows. We focus on recently proposed methods of the

TKE dissipation-rate retrievals based on zero crossings and recovering the missing part of the spectrum.

These methods are tested on fully resolved turbulence fields and compared to standard retrievals from power

spectra and structure functions. Anisotropy of turbulence due to buoyancy is shown to influence retrievals

based on the vertical velocity component. TKE dissipation-rate estimates from the number of crossings

correspond well to spectral estimates. The method based on the recovery of the missing part of the spectrum

works best for Pope’s model of the dissipation spectrum and is sensitive to external intermittency. This allows

for characterization of external intermittency by the Taylor-to-Liepmann scale ratio. Further improvements

of this method are possible when the variance of the velocity derivative is used instead of the number of zero

crossings per unit length. In conclusion, the new methods of TKE dissipation-rate retrieval from 1D series

provide a valuable complement to standard approaches.

1. Introduction

Turbulence contributes to many atmospheric phe-

nomena, including atmospheric convection and clouds.

An important quantity that characterizes the smallest

scales of such flows is the mean turbulence kinetic en-

ergy (TKE) dissipation rate «. In formulating subgrid

models for large-eddy simulation (Moeng and Sullivan

1994; Patton et al. 1998) or Lagrangian trajectory anal-

ysis of passive scalars (Poggi and Katul 2006), a robust

estimation of the TKE dissipation-rate profile is needed.

Several methods have been proposed to calculate

« from one-dimensional (1D) velocity time series by

making use of the local isotropy assumption. Indirect

methods are based on the inertial-range arguments

that follow fromKolmogorov’s hypotheses (Kolmogorov

1941; Albertson et al. 1997). Suchmethods are commonly

used in the analysis of low- and moderate-resolution

velocity time series of in situ airborne measurements

(Sharman et al. 2014; Kopeć et al. 2016a). In the case

of fully resolved velocity signals, the direct methods,

based on measuring the mean variance of velocity

fluctuation gradients, can be applied. Alternatively,

Sreenivasan et al. (1983) proposed the zero-crossing

approach, which requires counting the number of times

per unit length the velocity signal crosses the zero

threshold, denoted by NL, as shown in Fig. 1. The so-

called Liepmann scale, defined as L5 1/(pNL), is as-

sumed to be equal to the transverse Taylor’s microscale

ln, which is used to calculate «. Since NL in signals with

spectral cutoff are much smaller than in fully resolved
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signals, Wacławczyk et al. (2017) proposed two possi-

ble modifications to the zero-crossing method in order

to estimate « from moderate-resolution measurement

data.

The first method is based on a successive filtering

of the velocity signal, assuming that turbulence is ho-

mogeneous and isotropic and that the inertial scaling

of 25/3 holds. In the second approach, an analytical

model for the unresolved section of the spectrum is

used to calculate a correcting factor to NL, so the actual

relation between « andNL can be used.Wacławczyk et al.
(2017) validated these approaches on the data obtained

during the Physics of Stratocumulus Top (POST) re-

search campaign designed to investigate the marine

stratocumulus clouds as well as the details of the vertical

structure of the stratocumulus-topped boundary layer

(Gerber et al. 2013; Malinowski et al. 2013).

The abovementioned methods for « retrieval are

based on the local isotropy assumption. However, this

assumption might not always be fulfilled in real atmo-

spheric conditions (Chamecki and Dias 2004; Jen-La

Plante et al. 2016). Buoyancy is one reason for an-

isotropy in atmospheric flows. The energy spectra of

buoyancy-driven turbulence has been studied by several

authors (Bolgiano 1959; Lumley 1964; Lindborg 2006;

Waite 2011; Kumar et al. 2014). First Bolgiano (1959)

and Obukhov (1959) proposed the energy spectrum

should scale as E(k); k211/5 in stably stratified flows

[referred to as Bolgiano–Obukhov (BO) scaling], where

k is the wavenumber. Such scaling was later assumed

to also hold in thermally driven flows; however,

a fine-resolution simulation performed by Kumar

et al. (2014) revealed turbulent convection exhibit

the Kolmogorov spectrum. This was also confirmed by a

direct numerical simulation (DNS) study of Rayleigh–

Bénard convection (Verma et al. 2017) at a Prantl

number Pr5 n/k’ 1. Here, n and k are, respectively, the

kinematic and thermal diffusivities of a fluid. Kimura

and Herring (2012) investigated homogeneous incom-

pressible turbulence, subjected to a range of degrees of

stratification, using the pseudospectral DNS method.

The authors argued that due to the anisotropy of the

flow a single mean dissipation rate cannot provide a

universal Kolmogorov constant.

Physically complex atmospheric turbulence is not only

inhomogeneous or buoyancy driven, but also includes the

coexistence of laminar and turbulent regions called ex-

ternal intermittency (Lighthill 1956; Kurowski et al. 2009).

The volume fraction occupied by a turbulent flow is

called the intermittency factor g. The motivation of this

work is to investigate how the presence of anisotropy

due to buoyancy and external intermittency affects the

various retrieval techniques of « in the atmospheric

configurations, including the novel ones based on the

number of crossings. Moreover, as the data used for

the retrieval techniques are not idealized as DNS

output, analysis of low-pass filtered velocity time se-

ries is undertaken, as measured by an artificial air-

craft flying through the cloud, to assess performance

of the methods. All the « estimates are compared with

actual « values from DNS of the mixing layer at the

stratocumulus cloud top. In spite of the inhomogeneity

and physical complexity of the flow, the calculated «

profiles generally agree with DNS values within a certain

degree of accuracy. The observed deviations follow from

the physical complexity of the flow and low Reynolds

number (Re) of the DNS as compared to real atmo-

spheric conditions. The latter issue makes the spectral

retrieval methods difficult due to the relatively short

inertial range. Further, an additional source of errors

includes the deviations of the Taylor-to-Liepmann scale

ratio from unity, as the assumption ln/L’ 1 lies behind

the number of crossingmethod (Sreenivasan et al. 1983).

In this work, we show that ln/L’g in case of externally

intermittent flows.

Due to the abovementioneddifficulties, the presentwork

focuses on the second method proposed in Wacławczyk
et al. (2017), based on an analytical model to resolving

the missing part of the spectrum. We propose its alter-

native form, replacing the Liepmann scale with the Taylor

microscale. Results obtained with this new approach

compare favorably with the DNS over a wide range of

cutoff wavenumbers.

FIG. 1. Description of zero-crossing approach.
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This paper is structured as follows: In section 2 we

describe the current state of knowledge and propose

modification of the iterative method. The setup of the

case study used in our analysis is explained in section 3.

In sections 4 and 5 results of the TKE dissipation-rate

retrieval are presented. Section 6 provides conclusions

of the analysis results.

2. TKE dissipation-rate estimates from 1D signals

a. Direct and indirect methods

The TKE dissipation rate is defined as (e.g., Pope

2000)

«5 2nhs
ij
s
ij
i, where s

ij
5

1

2

 
›u0

i

›x
j

1
›u0

j

›x
i

!
, (1)

where sij is the fluctuating strain rate tensor, u0
i 5 ui 2 huii

denotes the ith component of fluctuating velocity, and

h�i is the ensemble average operator. The exact defi-

nition cannot be used to estimate « in case only 1D

intersections of turbulent velocity field are available

from experiments. Additionally, the resolution of the

measured signals can be deteriorated due to finite

sampling frequency of a sensor, as well as measurement

errors.

The methods used to retrieve the TKE dissipation rate

from 1D signals can be divided into two categories: direct

and indirect. In direct methods the gradients of velocity

are measured. Indirect methods relate the small-scale phe-

nomenon of dissipation with inertial-range scales, as pre-

dicted by Kolmogorov’s second hypothesis (Kolmogorov

1941). Additionally, all methods are based on the local

isotropy assumption (Kolmogorov 1941).

The two most common indirect approaches use an

inertial-range scaling form of the power spectra and

structure functions. In the homogeneous and isotropic

turbulence, the following energy spectrum is assumed

(Pope 2000):

E(k)5C«2/3PSk
25/3f

L
(kL)f

h
(kh) , (2)

where the constantC’ 1:5 is derived from experimental

data and fL and fh are nondimensional functions. The

term «PS should be equal to the TKE dissipation rate « if

the second similarity hypothesis is satisfied.

Functions fL and fh specify the shape of the energy

spectrum in the energy-containing range and the dissi-

pation range respectively; L is the length scale of large

eddies and h5 (n3/«)1/4 is the Kolmogorov length scale,

which is connected with the dissipative scales. The

function fh tends to unity for small khwhile fL tends to

unity for large kL, such that in the inertial range, the

formula E(k)5C«2/3PSk
25/3 is recovered. Pope (2000)

proposed the following forms of functions fL and fh:

f
L
(kL)5

(
kL

[(kL)2 1 c
L
]1/2

)5/31p0

, (3)

where cL is a positive constant, p0 5 2, and

f
h
(kh)5 e

2b [(kh)41c4h]
1/4

2ch

n o
, (4)

where b5 5:2 and ch 5 0:4. If ch 5 0, Eq. (4) reduces to

the exponential spectrum:

f
h
(kh)5 e2bkh , (5)

where b5 2:1. An alternative model spectrum for fh is

the Pao spectrum defined as

f
h
(kh)5 e2b(kh)4/3 , (6)

where b5 2:25. One-dimensional longitudinal and

transverse energy spectra E11 and E22, respectively,

are related to the energy spectrum function E(k)

(Pope 2000):

E
11
(k

1
)5

ð‘
k1

E(k)

k

�
12

k2
1

k2

�
dk,

E
22
(k

1
)5

1

2

ð‘
k1

E(k)

k

�
11

k2
1

k2

�
dk . (7)

In the inertial range, the spectra follow Kolmogorov’s

25/3 law:

E
11
(k

1
)5a«2/3PSk

25/3
1 , E

22
(k

1
)5a0«2/3PSk

25/3
1 , (8)

where a’ 0:49 and a0 ’ 0:65. Equations (8) make it

possible to estimate the TKE dissipation rate from the

inertial-range profile of the one-dimensional energy

spectra.

Alternatively, the profiles of the second- and third-

order longitudinal structure functions can be used to

calculate «. The nth-order structure function reads

Dn 5 h[u0
l(x1 r, t)2 u0

l(x, t)]
ni. Here u0

l is the longitu-

dinal component of the velocity fluctuation vector.

In the inertial subrange, the second- and third-order

structure functions are related to the dissipation rate by

the formulas (e.g., Pope 2000)

D
2
(r)5C

2
«2/3D2

r2/3, D
3
(r)52

4

5
«
D3
r , (9)

where «D2
and «D3

should approximate «.
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In the case of a turbulent signal resolving the smallest

scales, the ‘‘direct’’ relation between the TKE dissi-

pation rate and the longitudinal, or transverse, Taylor

microscale can be used:

«
l
5 15n

hu02
l i
l2
n

5 30n
hu02

l i
l2
l

. (10)

The longitudinal Taylor microscale equals

l
l
5

"
2hu02

l i
h(›u0

l/›x)
2i

#1/2
, (11)

and the transverse microscale is ln 5 ll/
ffiffiffi
2

p
. In case of

isotropy, «l coincides with «.

Other direct methods for calculating TKE dissipation

rate, based on number of zero crossings, have been

proposed by Sreenivasan et al. (1983) and are used by

many authors (see, e.g., Poggi and Katul 2009, 2010;

Wilson 1995; Yee et al. 1995). The zero-crossings method

was first introduced by Rice (1945). It assumes that the

stochastic process q and its derivative have Gaussian

statistics and are statistically independent. Following

this, the square of the number of zero crossings per unit

time is

N2 5
h(›q/›t)2i
p2hq2i . (12)

Sreenivasan et al. (1983) considered the Liepmann scale

defined as

L5
1

pN
l

, (13)

where Nl is a number of zero crossings of u0
l per unit

length. Using Eq. (12) Sreenivasan et al. (1983) assumed

that L’ ln 5 ll/
ffiffiffi
2

p
; hence

l
n

L
’ 1: (14)

For this, it was argued that Eq. (12) also holds for

strongly non-Gaussian velocity signals (or for non-

Gaussian derivative of the time series). This implies

that strong departures from Gaussianity do not nec-

essarily yield values appreciably different from unity

for the ratio of ln/L.
Based on this result and Eq. (10), Sreenivasan et al.

(1983) proposed a formula for calculating «, applicable

to fully resolved signals (measured down to the smallest

dissipative eddies), which reads

«
SR

5 15p2nhu02
l iN2

l , (15)

or for the number of crossings Nn calculated from

the time series of transverse velocity fluctuation

component u0
n:

«
SR

5
15

2
p2nhu02

l iN2
n . (16)

The number of crossings is related to the energy

spectra E11 by the formula

p2hu02
l iN2

l 5

ð‘
0

k2E
11
dk . (17)

In case a signal is low-pass filtered the number of zero

crossings per unit length depends on cutoff wavenumber.

Hence, Wacławczyk et al. (2017) proposed a possible

modification for zero-crossing method to retrieve « from

the restricted range of k values. The motivation was to

increase robustness of « retrieval using different statistics.

Two procedures formulated in Wacławczyk et al. (2017)

are discussed in more detail in section 2b, below.

b. Methods based on number of crossings

If we assume that the applied filter is rectangular in

the wavenumber space, then from Eqs. (17) and (8) the

TKE dissipation rate can be estimated from

p2(hu02
1 iN2

1 2 hu02
i iN2

i )5

ðk1
ki

k2E
11
dk5

3

4
a«2/3NC(k

4/3
1 2 k4/3

i ) ,

(18)

where hu02
i i is the variance and Ni is the number of

crossings per unit length of a signal filtered with a cutoff

wavenumber ki which is inside the inertial range. Fil-

tering the signal with a series of cutoff wavenumbers ki,

«NC can be estimated from Eq. (18) using a linear least

squares fitting method, and used as a proxy for the TKE

dissipation rate «.

We note in passing that the scaling of Ni with ki was

also investigated by Mazellier and Vassilicos (2008) to

estimate the dissipation-rate constant C« in Taylor’s

formula «5C«hu02i3/2/L , where L is the longitudinal

integral length scale of turbulence.

The secondmethod is based on recovering themissing

part of the spectrum in the inertial and dissipative range,

by introducing a correcting factor to the number of

crossings per unit length. As such, this method can be

treated as a smooth blending between indirect and direct

methods as it recovers the former as the filter cutoff

moves into the inertial range and the latter as the filter

cutoff moves into the dissipative range.

The number of crossings per unit length Ncut is calcu-

lated from the low-pass filtered signal, where the finescale

fluctuations have the highest wavenumber kcut. Assuming
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again that the filter is rectangular in the wavenumber

space, Eq. (17) written for the filtered signal is

p2hu02
cutiN2

cut 5

ðkcut
0

k2
1E11

dk
1
, (19)

where hu02
cuti is the variance of the signal. The ratio of

Eqs. (17) and (19) leads to the formula

hu02
l iN2

l 5 hu02
cutiN2

cut

ð‘
0

k2
1E11

dk
1ðkcut

0

k2
1E11

dk
1

5 hu02
cutiN2

cut

0
BBB@11

ð‘
kcut

k2
1E11

dk
1ðkcut

0

k2
1E11

dk
1

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CF

, (20)

where CF is the correcting factor. Assuming the energy

spectrum E(k) can be described by Eq. (2) with fL 5 1

and using relation (7) between E(k) and E11(k1) we

obtain

E
11
(k

1
)5C«2/3

ð‘
k1

k28/3f
h
(bkh)

�
12

k2
1

k2

�
dk , (21)

whereb5 2:1,C5 1:5, andh5 (n3/«)1/4 is theKolmogorov

length. Introducing Eq. (21) into Eq. (20) and changing the

variables to j5bkh and j1 5bk1h, the correcting factor

is obtained as

CF 5 11

ð‘
kcutbh

j21

ð‘
k1

j28/3f
h
(j)

�
12

j21
j2

�
dj dj

1ðkcutbh
0

j21

ð‘
j1

j28/3f
h
(j)

�
12

j21
j2

�
dj dj

1

. (22)

With this, the value of dissipation rate can be estimated

from Eqs. (15) and (20):

«
NCR

5 15p2nhu2
cutiN2

cutCF . (23)

To calculate CF from Eq. (22) a value of h should first

be specified; hence, an iterative procedure was proposed

inWacławczyk et al. (2017). It starts with an initial guess

of theTKEdissipation rate «0.With this, the corresponding

value of the Kolmogorov length h0 is calculated and

introduced into Eq. (22) for C F . The TKE dissipation

rate after the first iteration «1 is found fromEq. (23). The

procedure can be repeated; that is, the next approximation

of h1 5 (n3/«1)1/4 can be calculated and substituted into

Eq. (22). After several iterations the procedure converges

to the final value of «NCR that should approximate the

TKE dissipation rate « with an error defined by a pre-

scribed form Dh5 jhn11 2hnj, dh, where dh is a given

error value.

In this method, the cutoff kcut may be placed in the

inertial or dissipative range. In the latter case, the

spectral retrieval methods may lead to loss of certain

information as they are based on the inertial-range

scaling only. In Wacławczyk et al. (2017), performance

of the new methods was tested on measurement data

obtained during the POST airborne research campaign

(Gerber et al. 2013; Malinowski et al. 2013) with the

cutoff placed well in the inertial range. It was shown

that estimates obtained with the new methods were

comparable with results of standard retrieval techniques;

however, differing responses to errors due to finite sam-

pling and finite averaging windows were observed. Hence,

the newmethods can complement the standard techniques

to increase robustness of « retrieval.

c. Alternative formulation of the iterative method

Estimates of «NCR from Eqs. (22) and (23) may be

deteriorated if the ratio of Taylor’s microscale to the

number of crossings microscale ln/L deviate from unity

[see Eq. (14)]. For this reason, we propose a different

formulation of this method.

Based on Eqs. (11), (12), and (17) and relation

L5 ln 5 ll/
ffiffiffi
2

p
we have

1

4

*�
›u0

l

›x

�2
+
5

ð‘
0

k2
1E11

dk
1
. (24)

For low-pass-filtered signals (and filters rectangular in

the wavenumber space), Eq. (24) becomes

1

4

*�
›u0

cut

›x

�2
+
5

ðkcut
0

k2
1E11

dk
1
. (25)

Hence, h(›u0
cut/›x)

2i is related to h(›u0
l/›x)

2i by the

formula

*�
›u0

l

›x

�2
+
5

*�
›u0

cut

›x

�2
+ ð‘

0

k2
1E11

dk
1ðkcut

0

k2
1E11

dk
1

5

*�
›u0

cut

›x

�2
+0BBB@11

ð‘
kcut

k2
1E11

dk
1ðkcut

0

k2
1E11

dk
1

1
CCCA . (26)

If we introduce Eq. (21) for E11 into Eq. (26),

we obtain the same correcting factor as in Eq. (22).
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Based onEqs. (12), (23), and (26), the value of dissipation

rate is

«
lR

5 15n

*�
›u0

l

›x

�2
+
5 15n

*�
›u0

cut

›x

�2
+
CF . (27)

An iterative procedure, similar to the one described in

section 2b will be used to calculate «lR. With a first guess

of «0, the correcting factor will be calculated from

Eq. (22) and introduced into Eq. (27) to calculate the

new value of «lR. The procedure can be continued

until the condition Dh5 jhn11 2hnj,dh is satisfied.

In this work, we will investigate and compare the

performance of both approaches from Wacławczyk
et al. (2017) and the new Eq. (27) with different model

assumptions for fh as written in Eqs. (4) and (6) with

DNS. As the DNS data contain complete information

about turbulence, it will be possible to assess how the

« estimates change with changing cutoff wavenumber.

3. Stratocumulus cloud-top mixing-layer
simulation for DYCOMS II RF01 case

As a test case, we consider a cloud-top mixing layer.

This system mimics the cloud-top region of strato-

cumulus clouds and proves convenient in studying

some aspects associated with submeter scales, like

evaporative cooling, as simulations of the complete

boundary layer cannot reach these small grid spacings

(Mellado et al. 2010; Mellado 2017; Mellado et al. 2018).

The system consists of two horizontal layers of moist

air: an upper region, which is warm and unsaturated

and represents the free troposphere, and a lower re-

gion, which is cool and saturated and represents the

cloud. In-cloud turbulence and the vertical wind shear

across the cloud top creates the cloud-top mixing layer

that is illustrated in Fig. 2. In-cloud turbulence is driven

by the longwave radiative cooling of the cloud top and

by the evaporative cooling caused by the mixing of

cloudy and tropospheric air. Radiative cooling is char-

acterized by the net upward radiative flux F0 and the

radiative extinction length L0, over which that cool-

ing concentrates. We consider the first research flight

of the DYCOMS II field campaign as reference, and

we use the measurement-based estimates L0 5 15m and

F0 5 70W m22 (Stevens et al. 2003). The radiative prop-

erties imply a reference buoyancy fluxB0 5F0g/(rcpT0)5
0:002m2 s23, where g is the gravitational acceleration,

and a reference velocity scaleU0 5 (B0L0)
1/3 5 0:3m s21.

The Reynolds number in the simulation isU0L0/n5 800,

which is about 300 times smaller than that in the atmo-

sphere. The velocity variation across the cloud-top region

is 3ms22 (Faloona et al. 2005).

The horizontal size of the computational domain is

54L0. The domain is discretized with 5120 3 5120 3
2048 points in the streamwise, spanwise, and vertical

directions, which assures fine resolution of the flow

down to the smallest dissipative eddies with a charac-

teristic size h0 5 (n3/B0)
1/3 ’ 10 cm. The system is statis-

tically homogeneous over the horizontal planes; the data

along these planes are used to construct the different

statistics, which depend on the vertical coordinate z and

the time t. Further details of the simulations can be

found in Schulz and Mellado (2018). We investigated

the three velocity components in four horizontal planes

at heights z 2 f25:2L0, 23:5L0, 21:7L0, 0:1L0g, where
z5 0:1L0 corresponds to the height of minimum buoy-

ancy flux and z523:5L0 corresponds to the height of

maximum buoyancy flux.

Figure 3 includes vertical profiles of the mean veloc-

ity; hui in the streamwise (x) direction; the root-mean-

square (rms) of the three velocity components urms, yrms,

and wrms in the streamwise, spanwise, and vertical di-

rections, respectively; and the budget of the turbulence

kinetic energy. The angle brackets indicate horizontal

average. The viscous dissipation rate of the TKE is de-

fined by Eq. (1), the buoyancy flux is B5 hb0w0i, and the

shear production term is P52hu0w0i›zhui. It is worth

FIG. 2. Vertical cross section of the liquid water specific humidity in the cloud-top mixing layer. Gray colors indicate regions with

q‘ higher than inside the cloud due to the radiative cooling. The horizontal bars at the sides of the figure indicate the position of the

minimum buoyancy flux (horizontal plane z5 0:1L0, where L0 is the radiative extinction length) and the maximum buoyancy flux

(horizontal plane z523:5L0).
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noting that profiles of rms velocity component fluc-

tuations in Fig. 3 indicating anisotropy of turbulence

are in agreement with themeasurement data reported in

Jen-La Plante et al. (2016). Moreover, profiles of budget

terms of turbulence kinetic energy are consistent with

observations reported in Brost et al. (1982) and results

of high-resolution large-eddy simulations (LESs) (Kopeć

et al. 2016b; Heinze et al. 2015).

4. TKE dissipation-rate estimates from
inertial-range scaling

a. DNS signals

The methods related to the local isotropy assumption

and inertial-range scaling are commonly used to analyze

1D signals from airborne measurements. At the same

time, turbulent flows in clouds or atmospheric boundary

layers are in fact inhomogeneous and buoyant. The pur-

pose of this analysis is to check how predictions of these

methods, when applied to DNS data, compare with the

true value of «DNS calculated from Eq. (1). All analyses

were done with MATLAB software.

We first investigated 1D spectra of three velocity

components u, y, and w (see Figs. 4–6, respectively).

FIG. 3. Velocity field data in the cloud-top mixing layer. The

upper horizontal black line indicates the height of minimum

buoyancy flux (horizontal plane z5 0:1L0) while the lower hori-

zontal black line indicates the height of maximum buoyancy flux

(horizontal plane z523:5L0).

FIG. 4. Compensated 1D velocity spectra (dimensionless) of the

u velocity component at z 2 f25:2L0, 23:5L0, 21:7L0, 0:1L0g:
(a) longitudinal and (b) transverse spectra.
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To calculate the compensated spectra, we multi-

plied each E11, E22, and E33 by a corresponding «22/3
DNS at

z 2 f25:2L0, 23:5L0, 21:7L0, 0:1L0g and by k5/3
1 or

k5/3
2 . Spectra calculated in the x direction were additionally

averaged in the spanwise (y) direction. Similarly, spectra

calculated in the y direction were averaged in the stream-

wise (x) direction. The horizontal lines in Figs. 4–6 are

equal to the constant coefficients fromEq. (8), a5 0:5 for

the longitudinal and a0 5 0:65 for the transverse spectra.

We observe similar profiles of corresponding com-

pensated spectra at planes z525:2L0,23:5L0,21:7L0.

Results calculated at z5 0:1L0, placed in the upper part

of stratocumulus cloud, are clearly different. This region

of the flow is affected by the presence of shear and

stable stratification (see Fig. 3) as well as external in-

termittency. The contribution of large-scale instabilities

induced by the shear is visible in the profile of E11(k1) at

plane z5 0:1L0 as a maximum at small k. Moreover,

FIG. 5. Compensated 1D velocity spectra (dimensionless) of the

y velocity component at z 2 f25:2L0, 23:5L0, 21:7L0, 0:1L0g:
(a) transverse and (b) longitudinal spectra.

FIG. 6. Compensated 1D velocity spectra (dimensionless) of the

w velocity component at z 2 f25:2L0, 23:5L0, 21:7L0, 0:1L0g:
(a) transverse spectra in the x direction and (b) transverse spectra

in the y direction.
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differences are observed between different types of

spectra. The longitudinal ones, E11(k1) and E22(k2)

(Figs. 4a and 5b), seem to closely follow Kolmogorov’s

K41 theory in a certain range of wavenumbers. This is

in spite of the relatively low Re of the considered flow,

where a clear separation between the dissipative and

energy-containing scales may not be attained. At the

same time, the transverse spectra E11(k2) and E22(k1)

(Figs. 4b and 5a) seem to scale with;k2a
1 or k2b

2 where

a and b are somewhat smaller than 5/3. Interestingly,

inertial range with the scaling close to k25/3
1 and k25/3

2

can be distinguished for the transverse spectra of

the third velocity component in Fig. 6; however,

the constant a0 ’ 1 is larger than the value 0.65 at

planes z525:2L0, 23:5L0, and 21:7L0. Kaiser and

Fedorovich (1998) argued that the excess of a0 over
value typical for the isotropic turbulence could be

caused by the presence of dominating buoyant forc-

ing, which favors vertical motions. In such a case,

pressure fluctuations were insufficient to isotropize tur-

bulence. Spectral anisotropy of velocity component

structure in the z5 0:1L0 layer indicates stable strati-

fication above the cloud top, and is in agreement with

the experimental data and LES reported in Pedersen

et al. (2018).

In the following, we investigate to what extent de-

viations from the K41 theory observed in Figs. 4–6 affect

estimations of «. To estimate «PS from power spectra

[Eqs. (8)] we fit a line with 25/3 slope on a logarithmic

plot. The log of the intercept is equivalent to a«2/3PS or

a0«2/3PS . Figure 7 provides the scaling of N
2
i hu02

i i with filter

cutoff ki and k1 5 0:4 (m21) [see Eq. (18)]. For each ki, a

corresponding Ni of a filtered signal u0
i was calculated.

The linear fit slope is equivalent to 3a«2/3NC, out of which

the dissipation rate «NC was calculated. We used the

sixth-order Butterworth filter to calculate successive u0
i,

ensuring there was no difference in results between the

fifth- and the sixth-order filters, which was also reported

in Mazellier and Vassilicos (2008). The frequency

response characteristic of the filter was investigated

in Wacławczyk et al. (2017) on artificial velocity time

series. In this case, the filter led to small (;4%) over-

prediction of hu02
i iN2

i . In this work we neglected the

effect of the filter on « estimates.

Next, we estimate «D2
and «D3

from the second- and

third-order structure functions as written in Eq. (9). We

obtained inertial-range values by fitting linearly a slope

of 2/3 to the second-order structure function as shown

in Fig. 8. An analogous procedure is performed to

calculate «D3
.

In isotropic turbulence, all estimates of « should,

theoretically, be equal. It would hence seem appro-

priate to use the same fitting ranges for «PS, «D2
, and

«D3
, appropriately converted from k space to r space

(i.e., with k5 2p/r). In practice, the fitting was difficult

due to the short inertial ranges—an attribute of low-Re

flows. Although inertial ranges of atmospheric high-Re

flows cover a few decades of k numbers, finite averag-

ing windows and finite resolutions of the measurements

cause analogous problems—results are in fact dependent

on the chosen fitting ranges. As pointed out in Hou et al.

(1998) and confirmed by other authors (Chamecki and

Dias 2004), the effect of finite power-law range in the

spectral space results in a much shorter power-law range

in the physical space. Also, in our case, the fitting ranges

optimal for D2 were different than those for power

spectra. To showdifferences in the estimates, we compare

results of different methods and different fitting ranges in

detail. We consider planes z523:5L0 and z5 0:1L0, as

they are regions of maximum and minimum buoyancy

flux, respectively.

Table 1 presents results for the plane z523:5L0 which

is placed in the turbulent region inside the cloud. The true

value of « at this plane equals «DNS 5 0:36B0. The first

fitting ranges presented in Table 1 seemed to be optimal

for the investigated spectra; the second seemed to be

optimal for the second-order structure functionsD2. We

present dissipation-rate estimates from the power spec-

trum «PS, number of crossings «NC, and second- and third-

order structure functions «D2
and «D3

. We observed a

certain discrepancy of results, also between «PS and «D2

that are standard methods of estimating TKE dissipation

FIG. 7. Scaling of u02
i N

2
i with filter cutoff ki calculated at horizontal

plane z523:5L0 (blue line). The fit is given by a black line.
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rate. Moreover, «PS are overpredicted and «D2
, «D3

, and

«NC underpredicted when compared to «DNS 5 0:36B0.

The TKEdissipation-rate estimates from 1D signals, «PS,

«D2
, and «DNS at planes z521:7L0, 23:5L0, and25:2L0,

are compared in Fig. 9a. The fitting ranges were chosen to

match the inertial range of structure functions. It is seen

that «D2
are in most cases smaller than «PS. The linear fit

for the presented data is

«
D2

5 0:96«
PS
2 1:23 1024 (m2 s23) . (28)

An underprediction of «D2
versus «PS was also observed

by Jen-La Plante et al. (2016) in the POST measure-

ments of stratocumulus clouds in the well-mixed cloud-

top layer (therein called CTL). Results from POST for

this part of the cloud are presented in Fig. 9b and the

linear fit is

«
D2

5 0:52«
PS
1 2:53 1024 (m2 s23) . (29)

Having exact DNS data at hand we can observe that the

true «DNS dissipation rate can differ both from «D2
and

«PS (see Fig. 9a). Here, the linear fit line is flat:

«
DNS

5 0:075«
PS

1 6:43 1024 s23 (m2 s23) . (30)

Table 2 shows the corresponding fits for the horizontal

profile z5 0:1L0 placed in the upper part of the strato-

cumulus cloud. Here, the discrepancies between «DNS

and estimates from 1D intersections of the velocity field

are larger. Results differ also between the horizontal

velocity components (u in x, u in y, y in x, and y in y)

which makes the local isotropy assumption questionable.

As it is seen in Tables 1 and 2, the estimates of « from

the vertical velocity componentw differ from those based

on horizontal components. They are overpredicted in

comparison to «DNS at plane z523:5L0 that is placed

inside the CTL, where buoyancy is a source of turbulence

generation (see Table 1) and greatly underpredicted

at plane z5 0:1L0 (see Table 2) where the negative

buoyancy damps the vertical velocity fluctuations. In the

analysis of POST data by Jen-La Plante et al. (2016), the

layer of the cloud was referred to as moist and sheared

cloud-top mixing sublayer (CTMSL), and likewise, «

estimates based on w were underpredicted in this region

as compared to estimates from u (see Fig. 7 therein).

TABLE 1. Values of dissipation rate calculated at horizontal plane z523:5L0, «PS, «NC, «D2
, «D3

, «SR, and «l, are the dissipation rates

calculated using Eqs. (10), (8), (18), (9), (15), and (16), respectively. «DNS 5 0:36B0 is the averaged instantaneous dissipation rate from

DNS andL/ln is the ratio of zero-crossing microscale to Taylor’s microscale. The first fitting ranges seemed optimal for power spectra and

the second for structure functions.

k-fitting range
«PS
B0

«NC

B0

k-fitting range
«PS
B0

«NC

B0

«D2

B0

«D3

B0

«SR
B0

L/ln

«l
B0

u in x 0.17–0.63 0.47 0.42 0.49–0.85 0.41 0.31 0.31 0.23 0.26 1.17 0.37

y in y 0.25–0.63 0.47 0.40 0.42–0.84 0.43 0.33 0.32 0.21 0.26 1.17 0.37

u in y 0.29–0.84 0.50 0.40 0.84–1.67 0.38 0.26 0.30 — 0.24 1.24 0.37

y in x 0.33–0.63 0.52 0.41 0.75–1.38 0.43 0.29 0.28 — 0.22 1.24 0.37

w in x 0.25–0.63 0.65 0.51 0.33–0.59 0.63 0.48 0.57 — 0.27 1.22 0.40

w in y 0.17–0.63 0.65 0.55 0.33–0.59 0.64 0.52 0.58 — 0.28 1.20 0.40

FIG. 8. Second- and third-order structure functions of u in x at

horizontal plane z523:5L0 showing the linear fit of (a) ;r2/3 and

(b) ;r1.
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In the subsequent sections of this work, we will esti-

mate « based on the four signals with horizontal ve-

locity components, in order to obtain results closer

to «DNS.

We compare « estimates using the two different

fitting ranges from Tables 1 and 2 (averaged over the

four signals u in x, u in y, y in x, and y in y) in Figs. 10a

and 10b. The structure function’s fitting ranges give

better results. We can observe that «NC calculated using

Eq. (18) agrees closely with «D2
at z521:7L0, 23:5L0,

and25:2L0. Our results of «D3
from the third-order func-

tion are underestimates [also reported by Chamecki and

Dias (2004)], which is contrary to the idea that these

estimates are preferable due to their analytically derived

constant (4/5). The maximum value of the TKE dissi-

pation rate was found in the cloud-top mixing sublayer

z5 0:1L0, which agrees with the experiment reported

in Jen-La Plante et al. (2016). However, it is seen in

Fig. 10a that all estimates are underpredicted in com-

parison to «DNS in this nonisotropic, shear-influenced

part of the cloud.

b. Moderate- and low-resolution signals

Signals available from in situ airborne measurements

are far from the idealized fully resolved DNS data. Fi-

nite sampling frequency of a sensor and measurement

errors induce effective spectral cutoff of velocity time

series. To investigate the influence of the finite sampling

on the TKE dissipation-rate estimates, we perform the

following tests of DNS data. We consider a virtual air-

craft that measures velocity signal with effective cutoff

wavenumbers, kcut 5 0:62, 1:25, 2:5, and 5m21, placed,

approximately, within or close to the inertial range. For

each kcut, if the aircraft flies in the streamwise x direction

we create a new path every 100 grid points in the y di-

rection, such that 52 signals are collected. Similarly, if

the aircraft flies in the y direction, we create 52 paths in

the x direction. In the first test, we average the obtained

power spectra and hu02
i iN2

i profiles and calculate TKE

dissipation rates «PS and «NC. Finite sampling frequency

causes aliasing; that is, spectral densities for k higher

than the wavenumber kcut are added to the spectral

densities at k, kcut. This causes a bias error of the TKE

dissipation-rate estimates. As seen in Fig. 11 the bias of

FIG. 9. TKE dissipation rates in CTL «PS vs «D2
(red circles) and

«PS vs «DNS (triangles) in the well-mixed cloud-top layer. Solid lines

are the linear fit lines. (a) Stratocumulus cloud-top mixing-layer

simulation and (b) POSTmeasurements (Jen-La Plante et al. 2016).

TABLE 2. Values of dissipation rate calculated for horizontal plane z5 0:1L0, «PS, «NC, «D2
, «D3

, «SR, and «l are the dissipation rates

calculated fromEqs. (10), (8), (18), (9), (15), and (16), respectively. «DNS 5 0:89B0 is the averaged instantaneous dissipation rate fromDNS

and L/ln is the ratio of zero-crossing microscale to Taylor’s microscale. The first fitting ranges seemed optimal for power spectra and the

second for structure functions.

k-fitting range
«PS
B0

«NC

B0

k-fitting range
«PS
B0

«NC

B0

«D2

B0

«D3

B0

«SR
B0

L/ln

«l
B0

u in x 0.21–0.42 0.91 0.58 0.11–0.21 0.93 0.73 1.65 1.20 0.33 1.35 0.64

y in y 0.42–0.84 0.72 0.63 0.23–0.46 0.64 0.37 0.89 0.45 0.45 1.31 0.79

u in y 0.42–0.84 1.16 0.97 0.71–2.09 0.39 0.16 0.25 — 0.51 1.28 0.84

y in x 0.46–0.55 0.40 0.33 0.71–2.09 0.94 0.87 0.77 — 0.17 1.46 0.38

w in x 0.42–0.84 0.37 0.22 0.13–0.67 0.23 0.20 0.18 — 0.16 1.51 0.36

w in y 0.84–1.64 0.57 0.29 0.80–1.33 0.51 0.29 0.27 — 0.30 1.56 0.73
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«NC is smaller than the bias of «PS; in particular, results of

«NC for kcut 5 1:25m21 are still close to «DNS. This result

is in line with previous error analyses on artificially

generated velocity time series by Wacławczyk et al.

(2017), where a smaller bias error but somewhat larger

scatter of «NC was observed in comparison to «PS. In the

present analysis, we do not introduce any additional

corrections to the power spectra or to the hu02
i iN2

i pro-

files, to reduce the bias (suchmethods can be formulated

for high-Re flows; see Sharman et al. 2014).

Next, in order to test scatter of the results we estimate

«PS and «NC from each velocity signal separately. For a

given kcut we used the same fitting range for all signals.

Increasing kcut we extended the lower bound of the fit-

ting range; that is, for kcut5 0.62, 1.25, 2.5, and 5m21, the

fitting ranges were, respectively, k 5 [0.3, 0.6], [0.3, 0.8],

[0.3, 1.0], and [0.3, 1.2]m21. Figure 12 presents values of

«PS versus «NC calculated at the plane z525:2L0 for

kcut 5 5 and 0.62m21. In Fig. 12a, we observe somewhat

larger scatter of «NC; however, as kcut decreases, scatter

of both «NC and «PS becomes comparable (see Fig. 12b).

An additional method makes it possible to decrease

statistical uncertainties of the TKE dissipation-rate es-

timates. Figure 13 presents standard errors of «NC and

«PS separately and the error of the mean calculated from

a twice larger sample that contains both «NC and «PS. The

estimates were done for the 2 3 52 1D intersections

(in the x and y direction) of the velocity field measured

by the virtual aircraft along the plane z525:2L0. We

assume that the samples are uncorrelated; hence, the

standard error equals s5 std(«)/
ffiffiffiffi
N

p
, where std is the

standard deviation and N is the size of the sample. As

seen in Fig. 13, sPS1NC, calculated from the twice larger

sample containing both «NC and «PS, is smaller than

either «NC or «PS individually.

The obtained results confirm the method based on

the number of crossings responds differently to errors

FIG. 10. Normalized average TKE dissipation rates calculated

from Eqs. (8), (9), and (18) as a function of vertical coordinate z/L0

(dimensionless). Fitting ranges were estimated based on (a) theE11

and E22 functions and (b) the D2 function.

FIG. 11. Normalized TKE dissipation-rate estimates from signals

with effective cutoffs kcut as a function of vertical coordinate z/L0

(dimensionless): (a) «PS and (b) «NC.
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due to finite sampling than the spectral retrieval technique.

It can also complement standard approaches to reduce

the standard error of the mean TKE dissipation rate.

5. TKE dissipation-rate estimation with the direct
and iterative methods

a. Direct methods

Results discussed in section 4 reveal TKE dissipation-

rate recovery based on inertial-range arguments is dif-

ficult in the considered flow case. The first source of error

relates to the relatively low Re of DNS simulations.

The availableDNS data allow the estimation of « from the

direct methods. We calculated «SR from the Sreenivasan–

Rice Eqs. (15) and (16) (Sreenivasan et al. 1983) and

compared it with «l from Eq. (10). Results for planes

z523:5L0 and 0:1L0 are given in Tables 1 and 2. At

plane z523:5L0, the discrepancy between «SR and «l
is caused by the L/ln values that deviate from unity.

Possible reasons for this could be the low Re number

of the considered flow, and strong non-Gaussianity of

the pdfs of velocity derivatives. The estimates of «l from

u and y velocity components given in Table 1 are close

to «DNS 5 0:36B0, while estimates from the vertical com-

ponent are overpredicted. This shows that, even in

the core region of the model cloud, the local isotropy

assumption is not satisfied.

At the plane z5 0:1L0 we observe considerable

discrepancies between «l and «SR and large values of

L/ln (see Table 2). Large L/ln were also reported by

Kailasnath and Sreenivasan (1993) in the upper part

of the boundary layer, affected by the external in-

termittency. This leads us to the idea that L/ln is an

indicator of external intermittency, as we will describe

in more detail in section 5c. Values of «l and «SR av-

eraged over the four horizontal signals u in x, u in y,

y in x, and y in y are additionally compared with «DNS

in Fig. 14. As before, the largest difference is observed

at plane z5 0:1L0 where the given 1D intersections of

the velocity field are clearly not sufficient to estimate

the TKE dissipation rate.

b. Two formulations of the iterative method

In this section, we consider the second, iterative

approach fromWacławczyk et al. (2017), described in

FIG. 12. Profiles of «NC vs «PS normalized with B0 for signals with

kcut 5 (a) 5 and (b) 0.62m21.

FIG. 13. Standard errors of «NC and «PS separately and the twice-

larger sample of «NC and «PS normalized with B0 as a function of

kcut. Here, s5 std(«)/
ffiffiffiffi
N

p
, where std(«) is the standard deviation of

TKE dissipation-rate estimates and N is the size of the sample.
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section 2b, where the cutoff can be moved toward the

dissipative part of the spectrum.We test different models

for the function fh in Eq. (22), be it the Pope [Eq. (4)],

Pao [Eq. (6)], or exponential model [Eq. (5)]. Moreover,

we discuss results of both formulations of the iterative

method, the one based on number of crossings [Eq. (23)],

as proposed originally in Wacławczyk et al. (2017),

and the new, alternative form based on the variance of

velocity derivative [see Eq. (27)].

Figure 15 presents model spectra of u in x for the

horizontal plane z523:5L0. As it is seen, the Pope

formulation [Eq. (4)] provides a much better fit with

the DNS spectra than the Pao [Eq. (6)] or exponential

models [Eq. (5)].

Next, we investigate a DNS signal that is first low-pass

filtered with the use of a sixth-order Butterworth filter

with a given kcut. According to the procedure described

in Wacławczyk et al. (2017), in order to estimate « in the

iterativemethod, a first guess for the Kolmogorov length

h5 (n3/«)1/4 is made. We take «0 5 «PS, however, in-

dependently of the initial guess the procedure always

converges to the same value of «NCR or «lR. We calculate

the correcting factor from Eq. (22), and next, the value

of dissipation rate is estimated with Eq. (23) or (27). We

approximate the integrals in Eq. (22) with the trape-

zoidal rule. We repeat the procedure, as described in

section 2b, until the condition Dh5 jhn11 2hnj# dh

with dh 5 1028 is satisfied. Convergence is reached in

all simulations before the tenth iteration.

Figure 16 shows the difference between «NCR calcu-

lated fromEq. (23) and «lR estimated using Eq. (27). The

latter compares more favorably with the DNS results

over a wide range of kcut numbers. Again, the best

agreement is observed for the Pope model spectrum

[Eq. (4)], which is the most favorable choice for the

iterative method.

Figure 14 shows «lR and «NCR calculated according

to the Pope model for kcut 5 3m21, which is within the

dissipative range, as a function of vertical coordinate

z/L0. The difference in results between both formu-

lations can be explained by the fact that the Rice

formula [Eq. (12)] is only approximately satisfied for

the considered signals. Let us define the length scale of

the filtered signal, analogous to the Taylor microscale

[Eq. (11)] kcut:

l
cut

5
1ffiffiffi
2

p
"

2hu02
cuti

h(›u0
cut/›x)

2i

#1/2
. (31)

Analogously, Lcut 5 1/(pNcut) will denote the Liepmann

scale calculated for the filtered signal. We note here that

in case of the airborne measurements of high-Re tur-

bulence with cutoff wavenumbers placed in the inertial

range, investigated in Wacławczyk et al. (2017), the

condition Lcut/lcut ’ 1 was satisfied with a good accu-

racy. As far as the present DNS data are concerned,

Lcut/lcut changes with kcut (results not shown here).

It is closer to 1 if kcut is placed in the inertial range

but increases with increasing kcut toward values pre-

sented in Tables 1 and 2. This fact is the source of existing

FIG. 14. The plot of TKE dissipation-rate estimates normalized

by B0 as a function of z/L0 (dimensionless), «l from Eq. (10), «SR
from Eqs. (15) and (16), «NCR from Eq. (23) and «lR from Eq. (27).

Iterative methods were used with kcut 5 3m21. Solid line presents

corresponding «DNS.

FIG. 15. Compensated spectrum of u in x (dimensionless) at

z523:5L0 as a function of k1h (dimensionless): black lines rep-

resent model spectra with dissipative ranges described by Eqs. (4),

(6), and (5), and blue lines represent the DNS spectrum.
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discrepancies between «NCR and «lR, and as seen in

Fig. 16b, «lR compares markedly better with «DNS.

c. L/ln ratio as the intermittency measure

The motivation of the present subsection is to un-

derstand the reason for the strong deviations of theL/ln

ratio from unity. The data seem to suggest that this de-

viation is caused by the external or global intermittency

connected with the existence of laminar spots within the

turbulent flow.

In the literature, several different methods were pro-

posed to differentiate between rotational (turbulent)

and irrotational (nonturbulent) parts of a measured

velocity signal (Zhang et al. 1996). Each requires defi-

nition of an indicator function q, a criterion function

f (q), and a threshold level Th. The flow is assumed

turbulent when f (q).Th. If instantaneous values of

vorticity v5=3 u are known from measurements or

DNS data, the enstrophy V5 (1/2)jvj2 can be used as

the criterion function q. However, g estimation based on

vorticity may also be subject to error due to the presence

of mean gradients or nonturbulent wavelike motions

that spuriously increaseV above the threshold (Ansorge

and Mellado 2016).

As a first approximation, we assume that in the ex-

ternally intermittent flow, the statistics will change to

ghu02i and gh(›u0/›x)2i. Moreover, the laminar part of

the signal does not significantly contribute to the

number of crossings; hence, we will detect gNL crossings

per unit length in the intermittent signal. With this, the

Taylor microscale, the Liepmann scale, and their ratio

will change to

l
nI
5

"
ghu02i

gh(›u0/›x)2i

#1/2
5 l

n
, L

I
5

1

gpN
L

5
1

g
L,

l
nI

L
I

5 g
l
n

L
, (32)

where the subscripts I are related to the statistics in the

intermittent flow. If ln/L’ 1, then in the intermittent

flow, lnI /LI ’ g. We note, however, that in our case ln/L
is around 0.8 even in the core region of the flow. We will

compare predictions of Eq. (32), that is, the ratio

l
nI
/L

I

(l
n
/L)

T

(33)

(the subscript T is used to denote mean value in the

turbulent, core region of the flow), with g. For this

purpose, we first subtracted the mean from the in-

stantaneous vorticity. The enstrophy V based on the

fluctuating vorticity was our criterion function. Regions

whereVwas smaller than a certain threshold value were

identified as ‘‘laminar spots.’’ We calculated g, as the

mean volume fraction of turbulent flow at a given ver-

tical height, by averaging in the streamwise direction

and, additionally, in the spanwise direction over four

planes x/L0 5 0, 13.5, 27, and 40.5. In Fig. 17 this profile

is compared with the calculated ratio from Eq. (33). We

utilized (ln/L)T 5 0:83.

We observe favorable agreement between both curves,

at least for larger g values. Discrepancies for small g are

due to numerical errors, as both L and ln are small in

these regions. The results suggest that the Liepmann-to-

Taylor scale ratio, calculated from 1D intersections of the

velocity field is a good indicator of external intermittency.

In other words, discrepancies between «NCR and «lR
reported in section 5b reveal the presence of external

intermittency in a given flow region.

FIG. 16. The plot of « normalized byB0 against different values of

kcut. Results for u in x signal and for plane z523:5L0. (a) Method

based on the number of crossings and Eq. (23) and (b) the new

formulation, Eq. (27). The straight line represents the value of «DNS.
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6. Conclusions

In this work, we focus on scaling of the energy spectra

of turbulent flows in stratocumulus clouds and in-

vestigate different methods of TKE dissipation-rate re-

trieval from 1D intersections of the flow domain. We

investigate data from numerical experiments in the

stratocumulus cloud-top mixing-layer simulations. In

such experiments, high Re observed in nature could not

be reached; however, we argue model assumptions can

still be tested, enabling conclusions applicable to ‘‘real

world’’ flows to be drawn. Finite sampling frequency of a

sensor and measurement errors deteriorate results of

airborne experiments. Comparison with high-resolution

numerical simulations might help to estimate the role of

resulting effective cutoff frequencies and aliasing.

The investigated flow case appeared largely influenced

by buoyancy effects that cause deviations from the

Kolmogorov scaling. This, in turn, results in errors of

the TKEdissipation-rate retrieval based on local isotropy

assumption. We found the longitudinal spectra of hori-

zontal velocity components E11(k1) and E22(k2) are

comparable to Kolmogorov scaling over a certain

range of wavenumbers, unlike the transverse spectra. The

1D spectra of the vertical component show 25/3 scaling

range; however, the constanta0 is larger than the isotropic
value. As a result, TKE dissipation-rate estimates from u,

y, andw velocity components differ, which withstands the

local isotropy assumption.We also show that estimates in

the upper section of the cloud are subject to large errors,

as the buoyancy flux is minimum and stable stratification

strongly hinders vertical motions.

In this work, we investigated different methods of TKE

dissipation-rate retrieval, including the two approaches

based on the number of crossings per length proposed in

Wacławczyk et al. (2017). The first method used the

inertial-range arguments and provided scaling of Ni in

this range. From results presented in section 4, we can

conclude the performance of this approach is compa-

rable with standard spectral retrieval methods. More-

over, we investigated velocity signals with effective

spectral cutoffs measured by a ‘‘virtual aircraft’’ flying

through the stratocumulus cloud. We showed that «NC

estimated from the number of crossings had smaller

bias error than «PS calculated from energy spectra. On

the other hand, standard deviations of «NC results were

larger than that of «PS for two higher cutoffs. Still, an

additional method of the TKE dissipation-rate retrieval

makes it possible to reduce the standard error of a mean

estimated from a finite-size sample.

The second method proposed in Wacławczyk et al.

(2017) was based on the recovery of the missing part

of the spectrum, that is, the part with k higher than

the cutoff wavenumber kcut. It is based on a model for

the inertial and dissipative parts of the spectrum.

Hence, it could be used for signals with kcut placed in

the dissipative range. We showed that Pope’s model

for the dissipative part of the spectrum provides the best

fit to the DNS data. As kcut moves toward the high-

wavenumber part of the spectrum, estimated «NCR de-

teriorated. As identified, the discrepancies follow from

the deviations of the Taylor-to-Liepmann scale ln/L
from unity. We also showed that this ratio could be used

as a certain indicator of the external intermittency.

We proposed an alternative formulation of the second

method, where the variance of velocity derivative is

used instead of the number of crossings per length. The

remaining procedure is consistent; that is, the correction

factor for the missing part of the spectrum and « are

calculated iteratively. Results compare very favorably

with the DNS data. This also suggests that the dissi-

pative part of the spectrum has a universal form with a

prescribed dependence on «.

This study revealed that novel methods for TKE

dissipation-rate retrieval can complement standard

approaches. A perspective for a further study is to

test their performance on a larger set of experimental

data.
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