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Abstract. We present a fractal sub-grid scale model for large eddy simulation (LES) of
atmospheric flows. The fractal model is based on the fractality assumption of turbulent velocity
field with a dynamical hypothesis based on energy dissipation. The fractal model reconstruct
sub-grid velocity field from the knowledge of its filtered values on LES grid, by means of fractal
interpolation, proposed by Scotti and Meneveau (1999). The characteristics of the reconstructed
signal depends on the (free) stretching parameters, which is related to the fractal dimension of
the signal. In previous studies, the stretching parameters was assumed to be constant in space
and time and are obtained from experimental velocity signals of homogeneous and isotropic
turbulence. To improve this method and account for the stretching parameter variability, we
calculate the probability distribution function of the stretching parameter from direct numerical
simulation (DNS) data of stratocumulus-top boundary layer (STBL) (courtesy of Prof. J.-P.
Mellado from the Max Planck Institute of Meteorology) using the geometric method proposed
by Mazel and Hayes. We perform 1D a priori test and compare statistics of the constructed
velocity increment with DNS velocity increments.

1. Introduction

Atmospheric flows in nature display complex spatial and temporal structures over a wide
range of scales from the large synoptic scales O(1000km) to the smallest dissipative scales
O(lem — 1mm) with Reynold number L/n ~ O(10°). All scales play important role in
weather prediction including the small scales, which influence droplet collision rate in clouds
and affect average settling velocity of droplets with Stokes number much smaller than 1. Direct
numerical simulation is an ideal approach to resolve all these scales but it imposes an unrealistic
computational cost. Alternatively, large-eddy simulation (LES) allows for significantly improved
accuracy in simulating atmospheric (turbulent) flows, by calculating the large scale features of
the flow while the interactions between large (resolved) scales and small (unresolved) scales are
accounted for by a subgrid-scale model. This type of subgrid models are called functional models.
Several functional model has been proposed since the development of the first by Smagorinsky
[7] but none has achieve the necessary accuracy for modeling turbulence.

However, structural sub-grid models, an alternative to the functional models, aim at
mimicking (some of) the subgrid scales. These models allows for the approximate reconstruction
of two-point particle statistics at the subgrid scale, such as relative small scale velocity and
particle segregation patterns [12]. Example of structural models are the fractal interpolation [1]
and the kinematic simulations based on Fourier modes [8, 11]. Pozorski and Rosa (2018) [11]
studied the effect of filtering of the carrier fluid velocity on particle dynamics in forced isotropic
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turbulence. They also use kinematic simulations (KS) based on Fourier modes, as a structural
subgrid model, to construct the (unresolved) small scales for particle dispersion. They concluded
that the kinematic simulation could not mimic the sweeping effect of small scales by the resolved
eddies.

Fractal interpolation technique (FIT) was introduced to construct synthetic, fractal subgrid-
scale fields applied to large eddy simulation of both steady and freely isotropic decaying
turbulence [4]. A (free) parameter used to determine the characteristics of the reconstructed
(FIT) signal is called the stretching parameter. In [4], it was assumed that the stretching
parameters are constant in space and time in homogeneous and isotropic turbulence. These
parameters were set to d = +271/3. Salvetti et al (2006) [6] use the fractal interpolation
technique to reconstruct the velocity field from the filtered values on a coarse (resolved) grid to
track Lagrangian particles in turbulent channel flows. They concluded that the constant values
of the stretching parameters are not well suited for Lagrangian tracking of particles in near-wall
turbulence. Basu et al. (2004) [2] proposed an extension of this work by developing a multiaffine
fractal interpolation scheme with stretching parameters d = —0.887 and d = —0.676 and
showed that it preserves the higher-order structure functions and the non-Gaussian probability
density function of the velocity increments. They performed an extensive a priori analyses of
atmospheric boundary layer measurements and argued that the multiaffine closure model should
give satisfactory performance in large eddy simulations.

Atmospheric turbulence is known to be inhomogeneous and possesses both internal and
external intermittency. Internal intermittency means that large velocity gradients are present
at small scales and the probability density function (pdf) of velocity differences at small scales
are highly non-gaussian. External intermittency refers to the co-existence of both laminar and
turbulent regions in the flow. These attributes make it difficult to synthesize turbulent velocity
field using fractal interpolation. The approach of assuming a constant stretching parameter to
construct subgrid velocity signals are unrealistic (as reported by [6]) since the local stretching
parameters are likely to change randomly in space and time.

The aim of this work is to develop an improvement to the fractal interpolation technique
(FIT), which can be used as a closure model for Lagrangian tracking of particles in atmospheric
turbulence. To account for the variability of the stretching parameter, we compute the local
stretching parameter with a method proposed by Mazel and Hayes (1992) [5] and use its pdf for
the fractal interpolation. Also, we compare the statistics of the velocity increments using both
the previous version of FIT, the new one and multiaffine fractal interpolation scheme with the
statistics of the DNS velocity increments.

2. Fractal interpolation techniques

2.1. Basics

The fractal interpolation technique is an iterative affine mapping procedure to construct the
synthetic (unknown) small-scales eddies of the velocity field u(x,t) from the knowledge of its
filtered or coarse-grained field u(x,t). For the case of three interpolating points {(x;,d;),i =
0, 1,2}, the fractal interpolation iterative function system (IFS) is of the form {R% w;,j = 1,2},

R O
wl@)=(50) »tw(@)=() = ®

The parameters aj,cj,e; and f; can be determined in terms of d; (called the stretching
parameter). The two stretching parameters determine the characteristics of the reconstructed

with constraints
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signal and are constrained to be real and lie in the interval (-1,1). Its value is independent of the
interpolation points. Thus, once the stretching parameter is chosen, the remaining parameters
aj,cj,ej and f; are given as
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Figure 1. a) Different stages during the construction of a fractal function which interpolates
between (x;,7;) = (0,1) to (z;, ;) = (1,0.5) after 0,1 and 10 iterations with stretching parameter
d=+2"1/3 b) Energy spectrum of the constructed signal showing —5/3 slope.

More details can be found in [1]. To generate a synthetic small scale field, this mapping is
simply iterated many more times as shown in figure 1. It was shown in [4] that the stretching
parameter depends on the fractal dimension of the signal (scaling exponent spectrum) D as:

N
D=1+logy Y |dy| (7)

n=1

where N = the number of anchor points — 1. The attractor of the above IFS, G, is the graph
of a continuous function u : [xg,z2] — R, which interpolates the data points (z;,4;), if the
stretching parameter d; obey 0 < |d;| < 1. Also, if

N
> ldjl>1 (®)
j=1

and (x;,1;), are not collinear, then the fractal dimension of G is the unique real solution D of

N
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2.2. Stretching parameter estimation

As discussed in [5], the local stretching parameter d can be calculated using an analytic and
geometric approach. Both method gives approximate results as shown in figure 3-6 of [5]. For
this study, we use the geometric approach, which can be understood as a reverse process of
fractal interpolation. For example, for 5 interpolation points {(z;,u;),7 = 0,1,2,3,4}, let p be
the vertical distance between the middle interpolation point (z2,u2) and a straight line between
the end points (xg,ug) and (x4,us). The value of u is positive if the interpolation points are
above the straight line and negative otherwise. Let 11 be the vertical distance between the first
three interpolation points {(z;,u;),7 = 0,1,2} and a straight line between (xo,ug) and (x2,us2)
while 5 be the vertical distance between the last three interpolation points {(z;, u;),7 = 2,3, 4}
and a straight line between (z2,us) and (x4, u4). Both 14 and vy are positive if their respective
interpolation points are above their respective straight lines and negative otherwise. Then the
stretching parameters d; and dy are v1 /p and vo/p respectively. An illustration of this calculation
is presented in figure 2.
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Figure 2. Geometric approach for stretching parameter calculation.
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Figure 3. a) 1D DNS velocity signals showing the original and the FIT reconstructed signal b)
The stretching parameters used to construct FIT signal in figure (a).

Figure 3a shows the 1D original and reconstructed FIT signal with calculated d values. If
the procedure for d retrieval is correct both the original and the FIT signal should be identical,
which is the case as observed in figure 3a. The stretching parameter as shown in figure 3b varies
significantly in space and has values outside the interval (—1,1) because the original signal
is highly intermittent. Regions of high velocity gradients in intermittent signals can not be
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reproduced with FIT since d should only take values within the interval (—1,1). If we place a
constraint, such that |d| < 1, only some of the sub-grid scales will be reproduced. We compare
this geometric approach of calculating the stretching parameter with constant values proposed
by [4] and [2] in section 3.2.

3. Results

Direct numerical simulation (DNS) data of stratocumulus Cloud-Top for DYCOMS-II RF01
[3] (courtesy of Prof. J.-P. Mellado from the Max Planck Institute of Meteorology) is used
to calculate the stretching parameters spatial probability distribution, using the geometric
approach. Details of the simulation is outside the scope of this study and readers are referred
to [3] for more details.

3.1. Stretching parameter spatial probability distribution function

Horizontal profile at a height corresponding to in-cloud region with highest turbulent intensity
is used for the calculation of d. First, we investigate the variability of d as the DNS velocity
signal is filtered, starting with the fully resolved DNS signal and filtering successively down to
wavenumber from the inertial range. In each iteration step, the signal is filtered with a finite
impulse response (FIR) filter of order 30 (a form of a low pass filter) designed using the Hamming
window method and we calculate the local estimate of d with the geometric approach explained
in section 2.2. The decimation factor is set to equals twice the grid size of the previous iteration
step. This was done with decimation function in MATLAB® software. Stretching parameter
values outside the interval (—1,1) were neglected and absolute value of d was used to calculate
the spatial probability distribution function.
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Figure 4. a) Spatial probability distribution of stretching parameter for 1D DNS velocity
signals at different iteration step b) Its cumulative probability distribution at different iteration
step

Figure 4 shows the spatial probability distribution of stretching parameter for 1D DNS
velocity signals for different iteration step and their cumulative probability distribution function.
In figure 4a, the pdfs change significantly in the first four iterations but seems to be self-similar
when filtered with wavenumbers in the inertial range. Figure 5 shows the average stretching
parameter and fractal dimension of 1D DNS velocity signal for different iteration steps. In figure
5a, the average stretching parameter are seen to be smaller than 0.5 as compared to figure 2 of
[6] where an average value of 0.6 and 0.7 were reported for x and y directions, respectively. Our
result with somewhat smaller d might be due to the presence of external intermittency (laminar
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Figure 5. a) Average stretching parameter of 1D DNS velocity signals for different iteration
step b) Its average fractal dimension showing the 5/3 scaling.
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Figure 6. a) Pdf of stretching parameter d within the interval [0.5, 1] estimated from 1D DNS
velocity signal (b) Probability of positive stretching parameter

regions will give zero or close to zero stretching parameter). If we ignore |d| < 0.5, we will obtain
similar average stretching parameter as in [6] (see fig. 6a). Still, with our current results the
average fractal dimension decreases to 5/3 scaling, as expected in the inertial range, see figure
5b.

Since this work focuses on constructing inertial range subgrid scales of atmospheric
turbulence, we focus on the pdf of d when filtered with wavenumbers from the inertial range.
The pdf of d, as shown in figure 6a, will be used to construct sub-grid scale for the filtered DNS
velocity signal in section 3.2. We also investigate the probability of having positive (or negative)
stretching parameter and figure 6b shows that, on the average, there exist an equal probability
of having positive and negative stretching parameters.

8.2. 1D fractal interpolation of DNS of stratocumulus cloud-top for DYCOMS-1I RF01

We filter each 1D DNS velocity signal of stratocumulus cloud-top in the y direction with inertial
range wavenumber and use the pdf of d in figure 6a to construct subfilter scale using fractal
interpolation technique. We present the spectra and pdfs of the velocity increments of DNS,
filtered and FIT reconstructed signal. We also present the spectra and pdfs of the velocity
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increments of FIT reconstructed signal using a constant values of d as previously proposed.
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Figure 8. Normalized Pdfs of DNS, filtered and FIT velocity increments (du) signal (a) with
constant stretching parameter d = +2-1/3 (b) with constant stretching parameters d = 0 and
d = 0.93 (c) with constant stretching parameters d = —0.887 and d = —0.676 (d) with stretching
parameters from section 3.1

Here, we focus on extending the inertial range scales and not explicit recovery of the
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dissipative range of the spectra. Figure 7 shows the energy spectra of DNS, filtered and FIT
velocity signals. All the energy spectra exhibit periodic modulation and this is due to the dyadic
nature of the fractal interpolation technique (see figure 7 and 8 of [4]). Basu et al. (2004) [2]
avoid this periodic modulation by applying the discrete Haar wavelet transform. Since the
purpose of this work is to obtain statistics of velocity component of atmospheric turbulence,
we do not follow this approach and account for the Fourier spectra only. Figure 8 shows the
normalized pdfs of velocity increment (du) for DNS, filtered and FIT velocity signals. The best
fit with DNS data is observed for the reconstruction with the new pdf of stretching parameter,
shown in figure 8d.

4. Conclusion

In this work, we present a fractal subgrid scale model for large eddy simulation of atmospheric
flows. With fractal interpolation technique, we construct subgrid velocity field from the
knowledge of its filtered or LES grid proposed by [4]. The (free) stretching parameter determines
the characteristics of the reconstructed signal which can be derived from the fractal dimension.
In previous literature, the stretching parameter is chosen to be constant in time and space.
To account for its spatial variability, we estimate the spatial pdf of the stretching parameter
from DNS data of stratocumulus-top boundary layer, using the geometric method proposed
by [5]. We compare constant estimate of the stretching parameter with spatial pdf of the
stretching parameter to construct sub-grid velocity. We present the energy spectra and pdfs of
the normalized velocity increments.
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