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ABSTRACT

The dynamics of a subsiding shell at the edges of actively growing shallow cumulus clouds with updrafts
is analyzed using direct numerical simulation. The actively growing clouds have a fixed in-cloud buoyancy
and velocity. Turbulent mixing and evaporative cooling at the cloud edges generate a subsiding shell which
grows with time. A self-similar regime is observed for first and second order moments when normalized with
respective maximum values. Internal scales derived from integral properties of the flow problem are identified.
Self-similarity analysis conducted by normalizing using these scales reveal that contrary to classical self
similar flows, the turbulent kinetic energy budget terms and velocity moments scale according to the buoyancy
and not with the mean velocity. The shell thickness is observed to increase linearly with time. The buoyancy
scale remains time-invariant and is set by the initial cloud-environment thermodynamics. The shell accelerates
ballistically with a magnitude set by the saturation value of the buoyancy of the cloud-environment mixture.
In this regime, the shell is buoyancy driven and independent of the in-cloud velocity. Relations are obtained
for predicting the shell thickness and minimum velocities by linking the internal scales with external flow
parameters. The values thus calculated are consistent with the thickness and velocities observed in typical
shallow cumulus clouds. The entrainment coefficient is a function of the initial state of the cloud and the
environment, and is shown to be of the same order of magnitude as fractional entrainment rates calculated for
large scale models.

1. Introduction

Shallow cumulus convection is one of the most impor-
tant unresolved processes in a global climate model. Para-
meterizations for vertical convective transport of momen-
tum, heat and moisture include the effect of entrainment
of environmental air into the cloud core, and the detrain-
ment of the cloud core air into the environment (de Rooy
et al. 2011). Most current operational climate models use
parameterizations based on lateral mixing in a bulk ap-
proximation of entire fields of clouds. Numerous obser-
vational and model studies, especially using Large Eddy
Simulations (LES) have shown that lateral mixing and en-
trainment is the dominant contributor towards cloud dilu-
tion (de Rooy et al. 2011; Taylor and Baker 1991; Heus
et al. 2008). However, a precise picture of the mixing cha-
racteristics is still not available and studies on fundamen-
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tal understanding and parameterization of entrainment in
cumulus clouds remain an active field of current research
(de Rooy et al. 2011).

The turbulent mixing at cloud edges results in the for-
mation of a ’shell’ of negatively buoyant layer of air
around the cloud which adds to the complexity in stu-
dying and parameterizing entrainment in shallow cumu-
lus clouds. The majority of mass-flux based parameteriza-
tion schemes (Siebesma et al. 2003; Neggers et al. 2009;
Tiedtke 1989), use a bulk parameterization to calculate the
entrainment and detrainment rates into and from the cloud
cores. In such approximations, the properties of the en-
trained and detrained air are considered to be that of the
averaged properties of the environmental air and the cloud
cores respectively. With the increase of resolution in weat-
her models, cumulus convection has entered the grey zone,
and has become partially resolved. At those resolutions,
bulk parameterizations are no longer valid, and a more
detailed understanding of mixing on a cloud-by-cloud is
necessary (Neggers 2015). However, direct measurements
of the entrainment and detrainment rates by Romps (2010)
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show values twice as high as the ones used in current pa-
rameterization schemes. This difference was attributed to
the presence of these shells which makes it important to
include the dynamics of the shell in parameterizations of
cumulus clouds in GCMs (Dawe and Austin 2011; Park
et al. 2016; Hannah 2017). Jonker et al. (2008) suggested
that the majority of the upward mass flux in the cloud core
is compensated by the downward mass flux in the shell,
thus rendering cumulus clouds much less effective mixers
than previously thought.

One of the early observations of the shell was done by
Jonas (1990), who observed a thin descending layer of ne-
gatively buoyant air at the edges of developing and ma-
turing shallow cumulus clouds. Rodts et al. (2003) used
aircraft data from a large number of flight legs through cu-
muli and observed the shell of descending air. However
a conspicuous dip in the profiles of the virtual potential
temperature suggested that these shells were not formed
as a result of mechanical forcing but by evaporative cool-
ing due to entrainment and mixing with warm unsatura-
ted environmental air. Heus and Jonker (2008) performed
LES simulations and compared the simulation data with
the observations of Rodts et al. (2003). They agreed with
the conclusion that evaporative cooling was the driving
force behind the subsiding shell by analyzing the indivi-
dual terms in the vertical momentum budget. The findings
of Wang et al. (2009) further corroborated these observa-
tional and LES results and provided evidence for evapo-
rative cooling being the reason for the buoyancy driven
shells.

The importance of the shells was further magnified by
the analysis done by Jonker et al. (2008) and Heus et al.
(2009) which resulted in the dual conclusion that upward
transport in shallow clouds are concentrated more at the
cloud boundaries rather than the cloud core, and down-
ward transport is dominated in the area close to the boun-
daries as a result of the subsiding shells. The integral
negative mass flux in this shell is significant and almost
compensates the upward mass flux through the cloud core
region.

There has been a general consensus that local processes
at the cloud edge generate these shells. Most studies attri-
bute the existence of the shell to evaporative cooling (Heus
and Jonker 2008; Jonker et al. 2008). However, recent stu-
dies (Park et al. 2016, 2017) suggest that buoyancy rever-
sal at the cloud edge occurs even in a modified LES where
evaporative cooling is absent. Park et al. (2016) speculates
that the downdrafts in the boundary layer are generated by
overturning vortex-like circulations similar to Hill’s vortex
(Hill 1894) as proposed by Sherwood et al. (2013), which
are then strengthened by evaporative cooling in the cloud
layer; while Park et al. (2017) propose that they are gene-
rated instead by convective mixing across vertical levels
and condensation in the cloud.

The dynamic properties of these shells have been pre-
viously studied using observational data and numerical
simulations- mainly LES. LES studies are unable to re-
solve the finer details of cloud-edge mixing. Given that
the typical width of the shell is usually close to the re-
solution of the LES, Direct Numerical Simulation (DNS)
studies are much more effective when it comes to captu-
ring small-scale dynamics as they resolve scales down to
the Kolmogorov scale. But DNS studies have been few,
and always with simple idealized models.

The first DNS at the cloud edge was performed by
Abma et al. (2013) to explore the characteristics of the
shell and to obtain scaling laws for its evolution under
buoyancy reversing conditions. Since DNS resolves the
entire turbulent spectrum, it is expensive and beyond cur-
rent computational capabilities to resolve an entire cloud.
Hence only the flow immediately around the cloud edge
is considered. A highly idealized setup was used which
ignores important properties such as in-cloud buoyancy,
vertical velocity, turbulence and cloud microphysics. This
idealization, as fairly mentioned in the work is ”likely to
create an overestimation of the strength of the subsiding
shell”. Perrin and Jonker (2015) also used a mixing layer
to study cloud edges but with DNS combined with a La-
grangian particle tracking and collision algorithm. This
study was more focused on studying the effect of evapora-
tion, gravity, coalescence, and the initial droplet size dis-
tribution on the intensity of the mixing layer and the evolu-
tion of the droplet size distribution. However both simula-
tions were highly transient to study the dynamic properties
of the shell. The results of the DNS performed by Abma
et al. (2013) were compared with observations by Katz-
winkel et al. (2014) who performed measurements of the
structure of cloud edges for trade wind cumuli. They stu-
died turbulent, thermodynamic and microphysical struc-
tures. Since the measurements were taken over the trade
wind region where there is a continuous development of
the shallow cumulus clouds during the day, the shell pro-
perties were studied as the cloud evolves through different
stages. They observed that the shell thickness varied ac-
cording to the evolution stage of the cloud. This provides
additional motivation to develop a setup which could si-
mulate an actively growing cloud.

The goal of this work is to study the cloud-clear inter-
face while taking the presence of the in-cloud updraft into
account. The set-up is to be designed as close to actual
actively growing cloud conditions; with a distinct cloud
core with updrafts, surrounded by a thin subsiding shell
layer with downdrafts. We study how the shell evolves dy-
namically under the effects of evaporative cooling and tur-
bulent mixing, investigate if the flow reaches a self-similar
regime thus establishing Reynolds number independence,
and obtain scaling laws for the growth of the shell. We
also develop a simplified model to quantify the turbulent
entrainment in the cloud.
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FIG. 1. Two-layer cloud-environment simulation setup

This paper is structured as follows. In section 2 we ex-
plain the case setup, governing equations and the details
of the simulations performed. In section 3 we present ini-
tial results that identifies the subsiding shell. In section 4,
the self-similarity aspects of the flow is investigated. In
section 5 the characteristic scales for the flow are iden-
tified. Section 6 includes a theoretical analysis to iden-
tify the processes which govern the flow in the shell. In
section 7 the results from all the simulations are shown to
study how the shell properties are influenced by the initial
thermodynamics of the cloud and environment. Section 8
includes a discussion of the results from the simulations
and concluding remarks.

2. Simulations

a. Case setup

The simulations are temporal flow experiments in which
the development of a small region at the edge of a shal-
low cumulus, including both the cloud and the surroun-
ding environment, is studied. Specifically, we consider a
two layer cloud-environment set-up, in which the domain
is divided into a moist, positively buoyant cloud layer and
a dry, neutrally buoyant environment layer, with the gra-
vity vector aligned in the vertical direction ẑ as shown in
figure 1. The cloud has a positive buoyancy bc and an
in-cloud velocity wc and hence resembles an actively gro-
wing cloud as defined in Katzwinkel et al. (2014). The
liquid water potential temperature θl , and the total wa-
ter specific humidity qt , define the thermodynamic proper-
ties of the cloud and the environment. As in Abma et al.
(2013), the dominant mixing is assumed to occur locally
and hence the influence of the cloud top and base can be
neglected which makes the system statistically homoge-
neous in the vertical direction ẑ. This allows us to im-
pose periodic boundary conditions on the top and bottom

boundaries and in the span-wise direction if the domain is
large enough. Hence statistics can be obtained by avera-
ging over the yz-plane.

In test simulations, it was observed that the negatively
buoyant layer formed at the cloud edge grows at the ex-
pense of the cloud. The cloud-environmental air mixture
soon exhausts the entire cloud layer and descends as a sin-
gle fluid mass. As mentioned in the introduction, this is
a very transient process and does not provide an ideal set-
up to study the dynamic properties of the shell. In order
to overcome this problem and study the properties of the
subsiding shell in an actively growing cloud, a volumetric
forcing is applied to the cloud layer which nudges the ver-
tical velocity and thermodynamic properties of the cloud
towards pre-defined values. This is a way to constantly ’re-
plenish’ the cloud layer and hence mimic the conditions in
an actively growing cloud.

The governing equations are

∇ ·u = 0, (1a)
∂u
∂ t

+u ·∇u =−∇p+ν∇
2u+b ez +

wc−w
τ

ez H(Lc− x),

(1b)
∂ χ

∂ t
+u ·∇χ = K∇

2χ +
χc−χ

τ
H(Lc− x). (1c)

where, u = (u,v,w), is the velocity vector with u, v and
w as the horizontal, transverse and vertical components
respectively. The variable χ represents the scalars (θl ,qt),
p is the kinematic pressure, ν is the kinematic viscosity, K
represents the diffusivity constants (κ,D) where κ is the
thermal diffusivity of air and D is the molecular diffusivity
of water. Parameters wc and χc are the nudging values
maintained in the cloud layer, H is the Heaviside function,
Lc is the width of the initial cloud layer, ez is the unit vector
along the vertical direction and τ is a nudging time scale
for the forcing.

The buoyancy b is given by

b = g
(

θ −θ0

θ0
+

Rd

Rv
(qt −qt,0)−

Rv

Rd
ql

)
, (2)

where θ is the potential temperature, ql is the liquid wa-
ter specific humidity, θ0 and qt,0 are the corresponding
environmental values, Rd = 287.0J/kg/K and Rv = 461.5
J/kg/K are the gas constants for dry air and water vapour
respectively. A bulk condensation scheme developed by
Sommeria and Deardorff (1976) is used to diagnostically
calculate ql .

The DNS code SPARKLE is used, which solves the in-
compressible Navier-Stokes equations under the Boussi-
nesq approximation, and transport equations for scalars
to fourth order accuracy. Details of the numerical met-
hod used in SPARKLE and other details can be found in
Craske and van Reeuwijk (2015).
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FIG. 2. (a) Temperature-humidity diagram representing different ini-
tial states for cloud and environment. Black line represents the satura-
tion curve, squares represent the properties of the initial states of the
cloud and environment layer, and the dot-dash line represents the mix-
ing line. The property of the mixed parcels with minimum mean buoy-
ancy is represented by circles. (b) Magnitude of buoyancy minima in
the shell bs against θlc, the initial value of θl in the cloud for different
simulations.

b. Simulation details

A temperature-humidity diagram relating qt and θl is
shown in figure 2. The continuous line represents the sa-
turation curve. The initial values of the thermodynamic
properties θl and qt are represented by squares, where
all the squares above the saturation curve represent the
cloud and those below represent the environment. The
range of initial cloud and environment properties vary
from θl ≈ 286K → 303K and qt ≈ 7.5g/kg → 17g/kg.
Assuming linear mixing, the thermodynamic states of the
cloud-environmental air mixture can be approximated to
lie along a mixing line (dot-dash) between these two squa-
res. The mean properties of the saturated mixtures for each

of the simulations can then be considered to be lying on the
saturation curve. The point where this mixing line crosses
the saturation curve gives the properties of the critically
saturated mixture, θl,s and qt,s. These values can be used
to determine the magnitude of the buoyancy minima in the
shell bs (shown in bottom panel of figure 2). The circles
denote the point (θl,s, qt,s) obtained from the DNS for each
of the simulations and they lie very close to the saturation
curve hence showing that this approximation works well.

The cloud layer extends up to Lc in the cross-stream di-
rection and the forcing is applied in this region. The initial
buoyancy and vertical velocity distributions are homoge-
neous in the ẑ and ŷ directions. Periodic boundary condi-
tions are imposed along these directions as well. Free-slip
boundary conditions are imposed along the x̂ direction.
This setup results in the mean values having non-zero gra-
dients only along the x̂ direction. The forcing is applied
across the cloud layer till Lc = 1m over a time scale given
by τ = Lc/wc. To ensure that results were not influenced
by these arbitrary parameters, a sensitivity analysis was
performed in which two test simulations were performed:
the first by relaxing the nudging time scale to 2 Lc/wc,
and a second simulation by doubling Lc to 2m. The results
obtained indicate that the flow dynamics are insensitive to
the choice of Lc and τ (shown in appendix).

The domain size is 30m x 15m x 15m. The simulations
are performed until the shell reaches about 70 percent of
the domain width (in x̂ direction) so as to avoid any effects
from interference with the domain wall boundary.

The simulations named A01 - A10 vary in the initial
θl and qt of the cloud and environment, and the strength
of the cloud updraft wc as shown in table 1. The diffe-
rence in the initial values of the scalars ∆θl and ∆qt across
the cloud-environment interface are shown in the third and
fourth columns. The initial values of θl and ql in the cloud
layer are given by θlc and qlc respectively. The simulations
are run for a duration given by tsim. The remaining parame-
ters shown in the table (to the right of the double-vertical
line) are obtained from the simulation: the magnitude of
the minimum mean buoyancy in the shell bs, the Taylor

Reynolds number Reλ =
√

2kλ/3
ν

,where λ =
√

10νk
ε

is
the Taylor micro-scale, ν is the fluid kinematic viscosity,
k and ε are the integral turbulent kinetic energy and dis-
sipation respectively within the shell, and the resolution
r = ∆x/η where η is the Kolmogorov length scale. The
domain is discretized into a uniform grid of 3072 x 1536 x
1536 points for simulations A01, A04 and A09, and a grid
of 1536 x 768 x 768 for all other simulations. The simula-
tions were performed on the UK supercomputer ARCHER
with A01 running on 683 nodes (using 16,384 cores) for
20 hours (CPU time).
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TABLE 1. Simulation parameters. Parameters to the left of the double vertical line are from the initial setup and those to the right are diagnosed
from the simulation results.

Sim No Grid size ∆θl(K) ∆qt(g/kg) θlc(K) qlc(g/kg) wc(m/s) tsim(s) bs(m/s2) Reλ ∆x/η

A01 3072 x 1536 x 1536 -6.2 5.4 288.5 3.0 0.81 148 -0.022 95.1 0.62
A02 1536 x 768 x 768 -8.1 6.3 286.1 4.3 0.96 120 -0.025 70.3 0.89
A03 1536 x 768 x 768 -5.9 5.5 288.7 3.0 0.81 120 -0.018 61.1 0.78
A04 3072 x 1536 x 1536 -2.1 4.0 292.6 1.3 0.67 148 -0.0073 90.3 0.33
A05 1536 x 768 x 768 -5.2 6.0 292.8 3.0 0.52 148 -0.0088 102.7 1.39
A06 1536 x 768 x 768 -1.9 1.8 294.1 0.8 0.31 180 -0.0088 36.5 0.76
A07 1536 x 768 x 768 -2.6 2.0 296.4 1.3 0.31 240 -0.0014 60.9 0.62
A08 1536 x 768 x 768 -0.8 2.9 299.2 0.9 2.03 100 -0.0002 47.8 0.52
A09 3072 x 1536 x 1536 -2.6 2.0 300.4 1.2 0.43 220 -0.002 53.8 0.30
A10 1536 x 768 x 768 -0.8 1.3 301.2 0.3 2.00 120 -0.007 64.7 0.82

3. Shell identification

Simulation A01 is taken as the base simulation. The
turbulent mixing between the cool and moist cloudy air
and the warm, dry environmental air, leads to evaporation
(initially present only in cloudy area) until the mixture be-
comes critically saturated. The evaporative cooling at the
mixing zone in the cloud edge results in the layer beco-
ming negatively buoyant as the temperature scalar is no
longer passive, and is coupled to the flow buoyancy. We
refer to the negatively buoyant layer as the ’shell’, and to
the negatively buoyant layer with negative vertical velo-
city as the ’subsiding shell’.

Figure 3 shows the development of the subsiding shell
at the cloud boundary. The snapshots show the instantane-
ous buoyancy b, and vertical velocity w at different time
intervals for simulation A01. The white filaments corre-
spond to zero magnitude, and red and blue layers repre-
sent positive and negative regions respectively. As found
in Abma et al. (2013), buoyancy drives the flow and the
sharp interface between the cloud and the environment
evolves to convoluted filaments. The layer at the edge
of the cloud becomes negatively buoyant early on in the
simulation, and the thickness of the shell increases with
time. However even when b is negative, at earlier times,
the velocity still remains positive or close to zero. As the
shell thickens, we start seeing the formation of the subsi-
ding shell.

Figure 4 shows profiles of the mean buoyancy b and
the mean vertical velocity w of the developing flow at
the cloud boundary. As mentioned in the introduction,
the flow can be considered homogeneous over the verti-
cal direction ẑ and the span-wise direction ŷ. Hence all the
quantities are averaged over the yz plane. Additionally the
quantities are averaged over a time interval of 4s. Hence
the over-bar denotes statistics averaged over the homoge-
neous yz-plane and a time interval tstat = 4s. For example,

the mean buoyancy b(x, t) is calculated as,

b(x, t) =
1

tstat

tstat∫
0

 1
Ly Lz

∫∫
ˆyoz

b(x,y,z, t)dydz

dt (3)

Results are shown every 8s from t = 48s to t = 112s
for simulation A01. We observe the formation of the ne-
gatively buoyant shell and its thickening with time. The
magnitude of the minima for b and w, bmin(t) and wmin(t)
respectively, are also shown along with their respective lo-
cations along x̂, x0

b and x0
w. The bounds of the negatively

buoyant layer (x±b ), and negative vertical velocity (x±w ) are
also shown. These are respectively, the locations along x̂
where the quantities first turn negative (x−b , x−w ) and then
positive again (x+b , x+w ).

Figure 4 clearly shows the shell growing and thickening
with time. From figure 4(a), it is clear that after an initial
transient period, the minimum buoyancy bmin(t) is time-
invariant. This occurs when the cloud-air mixture is cri-
tically saturated as will be explained rigorously in section
5. Figure 4 also shows how x−b and x+b shifts as the shell
broadens with time. The inner boundary of the shell x−b , is
observed to shift only by a very small distance, which al-
lows us to consider it constant. The outer boundary of the
shell is observed to shift outwards into the environment.
Contrary to the mean buoyancy, the minimum magnitude
of the velocity is not time-invariant and figure 4(b) clearly
shows the shell accelerating downwards. Figure 4 hence
gives a clear picture of a negatively buoyant mixture of
cloudy and non-cloudy air accelerating downwards, i.e. a
subsiding shell. In both figures we observe a lateral shift
in the locations of the minima, x0

b and x0
w. The location of

the minima moves outwards into the environment as the
shell thickens.

In figure 5, the area in the numerical domain where b
and w is negative is shown in red and blue respectively.
The flow studied over 148 s can be considered to include
two phases, each consisting of negatively buoyant parcels
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FIG. 3. Instantaneous plots of the vertical cross-section of the flow. Top panel shows the evolution of buoyancy and bottom panel shows the
evolution of vertical velocity. Red represents positive values and blue negative values with white representing zero.

of air, but with either positive or negative velocities. The
first ’drag phase’, i.e. when the cold layer is dragged up al-
ong the updraft, occurs during approximately the first 40s

(which includes a flow transition period). In this phase,
a negatively buoyant region is formed, but the mixed air
parcels have positive vertical velocity. The second ’buoy-
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FIG. 4. Time series of (a) mean buoyancy b, and (b) mean verti-
cal velocity w. Also shown are the locations x−b , x+b , x−w , x+w where the
quantities first turn negative and consequently turn zero again, and the
location of the minimum magnitudes x0

b and x0
w. Both plots show profi-

les every 8s from time 48s to 112s.

ancy phase’ starts once this cold layer starts moving do-
wnwards, i.e. the buoyancy dominates. The transition
from the drag phase to the buoyancy phase occurs when
the shear across the shell inner boundary dominates the bu-
oyancy in the shell, and this is analysed in detail in section
6.

4. Self-similarity of the shell

In this section, we explore the self-similarity aspects of
the flow. The self-similarity variable is defined as

ηb =
x− x0

b
ls

, (4)

where ls(t) = x+b (t)− x−b (t) is the thickness of the shell
calculated from DNS data.

The b profiles from time 96s to 140s neatly collapse on
top of each other when normalized with bmin as shown in

FIG. 5. Boundaries of the subsiding shell. The negatively buoyant
mixture is shown in red and region with negative vertical velocity is in
blue. The inner and outer bounds of the red region is x−b and x+b . Red
line is x0

b and blue line is x0
w.

figure 6a. The colours indicate progress in time (from lig-
hter to darker). Also, given that the flow does not reach an
’equilibrium’ state in the sense that the shell is accelera-
ting, w shows a very good collapse when normalized with
wmin (figure 6b). The noticeable shift in most of the figu-
res for ηb values less than -0.25 corresponds to the cloud
layer in the domain where the nudging is applied.
Self similarity in the the mean turbulent kinetic energy
(TKE) k, and the turbulence fluxes u′w′, u′θ ′l , and u′q′t is
investigated. The TKE is calculated as k = 1

2 (u
′2 + v′2 +

w′2) where u′2, v′2 and w′2, are the measures of the tur-
bulent fluctuations along x, y and z directions respectively.
These quantities are normalized with their respective max-
ima. The results are shown in figures 6c, d, e and f where
a satisfactory collapse is observed for the quantities which
indicates self-similarity. All plots show profiles every 4s
from 96s to 140s.

5. Characteristic scales

The previous section demonstrated a convincing self-
similarity of the first and second order statistics. In this
section, the different possible characteristic scales for this
problem are explored. This can be done in several ways;
one approach would be to relate the scales used to non-
dimensionalize the profiles directly to external flow para-
meters and to time, as is done for example in van Reeu-
wijk et al. (2018). Another approach is to use internal sca-
les, which are derived from integral properties of the flow
problem (Craske and van Reeuwijk 2015). It is the latter
approach that we will pursue initially. Once the relevant
internal scales are identified, we link the internal scales to
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FIG. 6. Self similarity plots for shell. (a) b (b) w , (c) u′w′ , (d) k , (e) u′θ ′l , (f) u′q′t . All profiles are from time 96s to 140s. The colours indicate
progress in time (from lighter to darker).

external scales; it will turn out that this problem does not
quite behave like a classical self-similar flow.

We define characteristic scales using integral properties
of the flow, namely the buoyancy integral B and the vo-
lume flux Q defined as,

B(t) =−
∫ x+b (t)

x−b (t)
b(x, t)dx,

Q(t) =
∫ x+b (t)

x−b (t)
w(x, t)dx.

The buoyancy integral B can be linked to the characteristic
scales b∗ and l∗ as

B = b∗l∗. (5)

The buoyancy of the mixture of cloudy and non-cloudy
air, which were initially at two different thermodynamic
states, reaches a minimum value when the mixture is cri-
tically saturated. Intuitively, the characteristic buoyancy
scale b∗ for this particular problem will be the saturation

buoyancy bs, i.e.

b∗ = |bs|. (6)

The magnitude of bs can be predicted a priori by using
the mean values of the thermodynamic variables, i.e., θ l
and qt . As explained in section 2, ql = 0 on the saturation
curve shown in figure 2. From the definition for θ l , it then
follows that θ l,s = θ s implying that bs can be determined
from equations 1c and 2 as

bs = g
(

θ s−θ0

θ0
+

Rd

Rv
(qt,s−qt,0)

)
. (7)

The comparison between |bs| and |bmin| gives very good
agreement as shown in figure 7a. The saturation point is
set by the initial thermodynamics of the cloud and the en-
vironment and we observe it to be invariant with time as
we assume linear mixing.
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FIG. 7. Relationship between (a) buoyancy scale b∗ and |bmin|, (b) length scale l∗ and ls, (c) velocity scale w∗ and |wmin|, (d) maximum total
kinetic energy kmax and b∗l∗, (e) maximum turbulent momentum flux u′w′max and b∗l∗, and (f) maximum turbulent buoyancy production w′b′max
and b∗

√
b∗l∗. The x-axis is normalized with t0 = Lc/wc.

Once the buoyancy scale b∗ has been defined, the cha-
racteristic shell width l∗ follows directly as

l∗ =
B
b∗

, (8)

which can be interpreted as the top-hat width of the shell
(i.e. the width in case the buoyancy was constant inside the
shell). Figure 7(b) shows that this definition is indeed ap-
propriate, and we observe a relation ls = 2.2l∗. The x axis
has been normalized with t0 = Lc/wc. The length scale
l∗, which is a measure of the shell thickness, is also ob-
served to evolve linearly with time in figure 7b. Abma
et al. (2013) observed a quadratic growth in their idealized
model. However, the current study includes factors which
limit the free growth of the shell, such as the in-cloud posi-
tive buoyancy and the velocity, which could be the reason
for the linear growth of the shell thickness.

A characteristic velocity scale is identified next. Since
b∗ and l∗ are characteristic scales for this problem, it
would follow that the characteristic velocity scales as√

b∗l∗. This velocity scale is tested in figure 7c. It is clear
that the velocity scale

√
b∗l∗ is not representative of the

shell velocity. However, remarkably, the turbulence kine-
tic energy k and turbulent horizontal transport of vertical
momentum u′w′ do scale with

√
b∗l∗ as shown in figures

7d and e, and the buoyancy TKE production term w′b′ sca-
les with b∗

√
b∗l∗. The shell is also observed to be acce-

lerating as is shown in the linear growth of the velocity
scale w∗ in figure 7c. A ’flow equilibrium’ or a steady
state is not reached, and the velocity shows a possible bal-
listic growth with time with an acceleration defined by b∗

and hence the thermodynamics of the cloud.
The collapse of the different terms of the TKE bud-

get are now tested to confirm the ballistic growth of the
shell argument. The budget quantities are normalized with
the internal characteristic scales b∗ and l∗. The different
components of the averaged TKE budget, i.e., the kine-
tic energy production terms (gradient and buoyancy pro-
duction), transport terms and the viscous dissipation are
examined. The TKE budget is given by
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FIG. 8. Scalings for TKE budget quantities. (a) PS, the shear production, (b) PB, the buoyancy production, (c)T , the transport term and (d) ε , the
viscous dissipation rate of TKE. All profiles are from time 96s to 140s. The colours indicate progress in time (from lighter to darker).

∂k
∂ t

=−u′w′
∂w
∂x

+w′b′︸ ︷︷ ︸
PS+PB

(9)

− ∂u′p′

∂x
−

∂u′u′iu
′
i

∂x
+ν

∂ 2k
∂x2︸ ︷︷ ︸

T

−ν
∂u′i
∂x j

∂u′i
∂x j︸ ︷︷ ︸

ε

,

where k = 1
2 u′iu

′
i and repeated indices in a term imply a

summation for all values of the repeated index. The term
PS denotes shear production and PB is the buoyancy pro-
duction term or the buoyancy flux. The next three terms
combine to form the transport term T which includes the
pressure transport term, turbulent advective transport and
the diffusive transport of kinetic energy. The last term ε is
the viscous dissipation rate of TKE.

Good collapse of the turbulent quantities are shown in
figure 8(a) - (d) when scaled with the buoyancy scale b∗

and length scale l∗ which are calculated according to equa-
tions 6 and 8. The mean flow velocity is not important in
generating and driving the shell and this renders the velo-
city scale w∗ passive. The mean velocity is slaved to the
buoyancy effects and hence the turbulent quantities scale
with the buoyancy scale b∗.

6. Theory

In this section, we carry out a theoretical analysis to
identify the processes which generate the different phases
observed in the flow. We also identify how the shell is fed
with the buoyancy which drives the flow.

We start with Reynolds averaged (over the two homo-
geneous axes) equations for the vertical velocity and bu-
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FIG. 9. Cloud-environment mixing region for different simulations. (a) A06,(b) A01 (c) A03, (d) A02, (e) A05 (f) A04 (g) A10 (h) A09 (i) A07.
Line styles and color schemes are identical to figure 5.

oyancy using equations 1b and 1c,

∂w
∂ t

+
∂u′w′

∂x
= b+S1,

(10)

∂b
∂ t

+
∂u′b′

∂x
+g
(

A
θ0
− Rv

Rd

)(
∂qs

∂ t
+

∂u′qs′

∂x

)
= (11)

g
[

S2

θ0
+

(
A
θ0
−1
)

S3

]
,

where A = θ

T
Lv
cp

is assumed to be a constant, and S1, S2, S3

are the Reynolds averaged terms for the cloud forcing.
Integrating equation 10 from the shell inner boundary
x−b (t) to the shell outer boundary x+b (t) results in,

dQ
dt

= B+

(
w|x−b

dx−b
dt
−w|x+b

dx+b
dt

)
+u′w′|x−b −u′w′|x+b .

(12)

The budget equation for the volume flux Q is vital to-
wards explaining the presence of the drag and buoyancy
flow phases in the shell. The terms at the shell outer boun-
dary x+b , along with the Leibnitz integral term at x−b , are
observed to be small and hence neglected. The remaining
terms highlight the fact that the flow inside the shell is de-
termined by a balance between B, the buoyancy integral,
and u′w′|x−b , the horizontal transport of vertical momen-
tum at the inner boundary of the shell. The onset of the
buoyancy phase happens when the negative integral buoy-
ancy flux B in the shell overcomes the vertical momen-
tum flux u′w′ transferred horizontally into the shell at x−b ,
which results in a reversal in the direction of the shell velo-
city. When u′w′|x−b dominates the budget, we have the drag
phase identified in section 3, i.e., the cold layer is dragged
up by the cloud updraft. As B increases with time and con-
sequently overcomes the momentum flux, the negatively
buoyant layer reverses its direction and we start seeing the
subsiding shell.
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Equation 11 is now integrated from x−b (t) to x+b (t) gi-
ving,

dB
dt

= u′b′|x−b −u′b′|x+b (13)

+g
(

A
θ0
− Rv

Rd

)∫ x+b

x−b

(
∂qs

∂ t
+

∂u′qs′

∂x

)
dx,

Analyzing the different terms in equation 13, the third
term on the right hand side can be shown to be equal to
zero in the region x > Lc. It is also observed that the mag-
nitude of u′b′|x−b (not shown) is time-invariant for a parti-

cular simulation, and that of u′b′|x+b is negligible. Hence

the dominant term in the B budget is u′b′|x−b , which is the
buoyancy flux at the inner boundary of the shell. Assu-
ming u′b′|x−b ≈ constant, and neglecting all small terms,

B =
∫

u′b′|x−b dt. This shows that the total amount of bu-

oyancy flux u′b′ fed into the shell by the cloud ultimately
drives the turbulent flow and is responsible for feeding the
shell buoyancy and hence increasing its thickness.

Since the magnitude of u′b′|x−b is observed to be time-
invariant, a possible parameterization using wc and bc fol-
lows as

u′b′|x−b = γwcbc, (14)

where γ is a constant whose values for the different simu-
lations are given in table 2. This parameterization is used
in the following section to explain the possible external
factors that define the shell thickness and also to quantify
entrainment.

7. Cloud variability

In this section we study how the shell properties de-
pend on the initial thermodynamic properties of the cloud
by studying the results from the different simulations and
hence link the internal scales with external flow parame-
ters. A comparison of the shell formation during the first
100s for different clouds is shown in figure 9. In simula-
tions (a) A06, (b) A01, (c) A03 and (d) A02, there is an
early onset of the buoyancy phase in the shell compared to
simulations (e) A05, (f) A04 and (g) A10. In (h) A09 and
(i) A07, the drag phase dominates till the end of the simu-
lation. In simulation A08 (not shown) no shell is formed
at all.

The mean buoyancy and vertical velocity are analyzed
next. Figure 10 shows the normalized plots for b and w.
All the selected simulations reach a self-similar regime for
buoyancy where b collapses neatly in the region where the
shell is formed. The collapse for w is much less convin-
cing, however, which is expected due to the passive nature
of the mean velocity and the ballistic acceleration of the
shell.

There is a distinct difference visually in the shell
thickness between the different simulations as shown in

figure 9. This can be explained by analyzing the budget
for the buoyancy flux B given in equation 13. In equation
13, dB

dt , is by definition, the rate of growth of the turbulent
length scale (or the shell thickness) which is successfully
parameterized using bc and wc in equation 14. Therefore
we have reason to believe that the higher growth rate of
the shell thickness could be linked to the higher value of
ql in the cloud which can lead to a higher latent heat rele-
ase during evaporation; and also the higher initial value of
buoyancy bc in the cloud core, resulting in a much larger
horizontal buoyancy gradient at the cloud edge.

The different simulations confirm that the buoyancy
scale b∗ is indeed the fundamental characteristic scale.
Since the shell accelerates ballistically, it follows that a
possible relation linking the internal velocity scale with
external flow parameters would be wmin = b∗t. The hig-
her the magnitude of b∗, the lesser the time needed by the
shell to descend. This relationship between wmin and b∗t is
checked for the simulations in which we see the formation
of a subsiding shell and is shown in figure 11. Simulation
A10 has been excluded in the figure even though a sub-
siding shell is generated. This is because the evaporative
cooling is not strong enough to generate a negative ver-
tical velocity comparable in magnitude to the wmin seen
in the other simulations during the duration of the simu-
lation. We observe a very good relationship between the
two quantities (with a slope of approximately 0.15) which
leads to the equation

wmin = 0.25 |bs|(t− tB), (15)

where tB is the time at which the buoyancy phase starts
(which is different for each of the simulations considered
in figure 11; however no exact relation between tB and ini-
tial cloud thermodynamics was observed using the DNS
data).

The time dependence in equation 15 can be removed by
using equations 8 and 14, thereby successfully linking the
internal velocity scale with the external flow parameters,

wmin = 0.25|bs|
(
|bs|l∗

γwcbc
− tB

)
. (16)

Shell thickness and entrainment

In this sub-section, we develop a model to study the rate
of entrainment of the environment air into the cloud. The
shell can be considered to be part of the cloud and it grows
with the entrainment and mixing with the environment air.
Hence turbulent entrainment can be studied in terms of the
rate of growth of the thickness l∗ of the shell. Comparisons
between the observed shell thickness ls for the different si-
mulations is done in figure 12 where ls is normalized with
the characteristic scale l∗ for each simulation. In section
5, a relation ls = 2.2l∗ was observed for simulation A01.
Interestingly, this relation holds for all simulations as seen
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FIG. 10. Self similarity plots for b and w for different simulations. (a),(b) A01; (c),(d) A02; (e),(f) A06.

FIG. 11. Relationship between wmin and b∗(t− tB) in a subsiding shell FIG. 12. Evolution of normalized shell thickness.
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in figure 12 and be useful in predicting the size of the shell
thickness at a particular time given the initial cloud pro-
perties.

From this relation, an entrainment analysis can be per-
formed by comparison with the Morton, Taylor and Turner
model (Morton et al. 1956) for the turbulent entrainment
velocity which is,

we = αŵ (17)

where we is the entrainment velocity, which is a fraction of
a turbulent characteristic velocity ŵ. α is the entrainment
coefficient. This entrainment hypothesis is the standard
closure used in integral descriptions of turbulent flows like
jets and plumes (van Reeuwijk and Craske 2015). We
adapt this model to be used as a measure of entrainment
in our current study. The model connects the velocity
at which the environmental air is entrained into the shell
(we), to a characteristic cloud velocity (ŵ), by a coefficient
of proportionality α .

Considering the entrainment velocity we as the rate of
change of the characteristic thickness l∗ with time, we get,

d
dt
(l∗) = αŵ (18)

Using equations 8, 14, and the relation B ≈ u′b′|x−b t, l∗

can be replaced in equation 18. Comparing the resulting
relation with equation 17, the entrainment co-efficient α

is given by,

α =
γbc

|bs|
(19)

The coefficient is constant by definition and the values
are given in table 2. The second column indicates whet-
her a subsiding shell is formed within the first 100s of the
simulation. The entrainment co-efficient is different for
different simulations and shows that entrainment is depen-
dent on the initial thermodynamics and updraft velocities
of the cloud and environment.

The entrainment coefficient α can be linked to the
fractional entrainment rate ε used in cumulus paramete-
rization schemes for large scale models. This fractional
entrainment rate which can be expressed as the ratio of
the entrainment rate E to the convective mass flux M is
inversely proportional to the radius R of a cloud , i.e.
ε = E/M ≈ η/R, where η is a dimensionless proporti-
onality constant (Squires and Turner 1962; Simpson and
Wiggert 1969; Simpson 1971). Assuming a circular cross-
section for the cloud,

η

R
=

E
M

=
2πRwe

πR2ŵ
(20)

Using equation 17 this can be rewritten as,

ε =
η

R
= 2

α

R
(21)

TABLE 2. Parameterization coefficients for all simulations.

Sim No Shell bc wc F(m2/s3) γ α ≈ η/2
A01 Yes 0.039 0.81 2.8 x 10−3 0.09 0.14
A02 Yes 0.057 0.96 3.6 x 10−3 0.07 0.12
A03 Yes 0.046 0.81 2.4 x 10−3 0.06 0.17
A04 Yes 0.042 0.67 1.3 x 10−3 0.05 0.26
A05 Yes 0.072 0.52 2.3 x 10−3 0.06 0.5
A06 Yes 0.004 0.31 2.7 x 10−4 0.22 0.1
A07 No 0.015 0.31 1.9 x 10−4 0.04 0.26
A08 No 0.051 2.03 1.5 x 10−4 0.001 0.31
A09 No 0.011 0.43 2.1 x 10−4 0.04 0.20
A10 Yes 0.001 2.00 2.5 x 10−5 0.01 0.002

Since our temporal simulations do not include a valid
cloud radius, a fair comparison with numerical values of
ε present in LES studies such as Siebesma and Cuijpers
(1995), Dawe and Austin (2011),Romps (2010) is not pos-
sible. However, the value of the proportionality constant
η can be compared.

For the study in Romps (2010), η/R = (ε − δ )/R, and
the values calculated for a cloud layer between 750m and
1400m are, ε = 2.2 km−1 to 2.8 km−1 and δ = 3.5 km−1

to 4.1 km−1 resulting in values of η/R = 1.3. Assuming
a radius R = 500m, this leads to η = 0.65. For the current
study, η = 2α as shown in equation 21, giving numerical
values in the range 0.2 to 0.99 which are comparable with
that in Romps (2010).

8. Concluding remarks

A numerical case was developed to study the dynamics
of the descending shell formed at the edges of actively
growing shallow cumulus clouds. DNS was used to con-
duct a temporal study on the cloud-environment mixing
and study the properties of the turbulent flow generated by
evaporative cooling. A forcing was applied on the cloud
layer to maintain the in-cloud velocity and thermodyna-
mics at pre-defined values to simulate an actively growing
cloud. This introduces shear into the setup, and we end
up with a buoyantly driven shell inside a shear layer. A
bulk condensation scheme was used to describe cloud ther-
modynamics by diagnostically calculating the liquid water
content in the cloud.

Two distinct flow phases were observed within a nega-
tively buoyant turbulent cloud-environment mixture. The
first is a ’drag’ phase where the momentum flux transfer
dominates and the negatively buoyant shell is dragged ver-
tically upwards by the active cloud layer. The onset of
the second ’buoyancy’ phase occurs when the buoyancy
flux within the shell dominates and consequently the shell
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starts descending. The time at which the onset of the bu-
oyancy phase occurs (leading to the subsequent descen-
ding motion of the shell), depends on the dominating term
in the velocity flux budget. Higher the momentum flux
transfer between the cloud core and the shell, the greater
the delay in the onset of the buoyancy phase.

The shell buoyancy scale is observed to be invariant
with time which is consistent with what is seen by Abma
et al. (2013), and in our case is set entirely by the ini-
tial thermodynamic state of the cloud and the environ-
ment. However the shell thickness is observed to incre-
ase linearly with time while Abma et al. (2013) obser-
ved a quadratic growth. Since the rate of change of the
shell thickness has been shown to be dependent on the bu-
oyancy flux pumped into the shell at the inner boundary
(u′b′|x−b ), the addition of positive buoyancy and updrafts
in the cloud layer in this study could be the reason for this
difference. The presence of the actively growing cloud in-
hibits the free growth of the shell. The velocity increases
ballistically with the acceleration defined by the saturation
buoyancy value bs. The mean velocity is expected to be
passive and the turbulent shell is buoyancy driven. Initial
cloud conditions like the liquid water content, buoyancy
of cloud core, strength of the core updraft etc. define the
thickness and growth of the shell.

A self-similar regime is observed after an initial tran-
sient. However contrary to classical self similar flows, the
TKE budget terms and the velocity moments scale accor-
ding to the buoyancy and not with the mean velocity. The
TKE terms scale with b∗

√
b∗l∗ and the velocity moments

with b∗l∗. Internal scales based on the integral quantities
of mean buoyancy and vertical velocity were used to show
self-similarity. These scales were successfully linked with
external flow parameters.

The entrainment coefficient can be calculated by con-
sidering the shell as centred on the cloud edge and using
the time rate of change of the shell thickness as an entrai-
nment velocity. This coefficient will be a constant for a
particular initial state of the cloud and the environment. A
comparison is made with parameterization schemes used
in large scale models and the numerical values of the en-
trainment coefficients are found to be of the same order of
magnitude.

It is interesting to note here that for this case the shell
thickness and the velocity continues to grow indefinitely.
Since the shell is in the vicinity of an actively growing
cloud, it is continuously fed with moisture from the cloud
and the water droplets can evaporate leading to evapora-
tive cooling and further fuelling the shell growth. In the
presence of a more mature cloud nearing the end of its
lifetime, the shell would have probably grown inward at
the expense of the cloud. This could mean that the shell
thickness and velocity are limited only by the cloud evo-
lution phase and ultimately lifetime. It is also important
to highlight the fact that by imposing a periodic boundary

condition on a domain size of 30m, larger eddies which
could dominate flow before the end of the simulation are
being suppressed. However due to the limitations of DNS
and the temporal setup of the problem, this is unavoidable.

Using relations to predict the thickness and minimum
vertical velocity of the shell in a standard shallow cumu-
lus cloud like in simulation A01, the shell thickness would
grow to ls = 99.8m considering a cloud updraft lifetime of
408s. The minimum magnitude of the vertical velocity in
the shell would reach values of wmin = −2.3m/s. This is
consistent with values observed in single cloud transects
in Katzwinkel et al. (2014). The current experiment was
considered with a non-stratified environment, but a stra-
tification in the environment could also possibly limit the
velocity and thickness of the shell.
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APPENDIX

Sensitivity to forcing parameters

The case-setup presented in this work is unique due to
the introduction of the volumetric nudging inside the cloud
layer. This was done primarily to prevent the shell layer
from exhausting the cloud layer which then leads to a very
transient flow. However, forcing the cloud layer can have
several effects on the flow, primarily with respect to how
fast the shell grows or thickens. We perform an analy-
sis to study the sensitivity of the results to the forcing in
the cloud layer. This is done by varying the length of the
cloud layer (and hence the length over which the forcing is
applied), and by changing the time scale of forcing. Two
extra simulations B01 and B02 are performed; in B01, τ

the time scale of nudging is relaxed, and in B02, Lc the
width of the cloud layer is changed. The new simulations
are similar in all other parameters to simulation A03.

a. Effect of time scale τ

In simulation B01, Lc is fixed and τ is relaxed to twice
the value used in A03, i.e. τ = 2Lc

wc
. This results in a softe-

ning of the sharp step change in the velocity and the ther-
modynamic properties, resulting in a shear layer which is
much reduced in intensity compared to that in simulation
A03 as shown in figure A1 (a) and (b). An analysis of
the length scale l∗ for B01 clearly shows that the length
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FIG. A1. Mean buoyancy profiles for simulations (a) A03 (Lc = 1m), (b) B01
(

τ = 2Lc
wc

)
, and (c) B02, (Lc = 2m)

scale is still increasing linearly with time as shown in fi-
gure A1(c). Additionally, figures A1(c) and (d) show that
the relations ls = 2.2l∗ and wmin = 0.25b∗(t − tB) obser-
ved in section 5 holds for B01 as well. This allows us
to conclude that the growth of the shell thickness remains
unaffected by the intensity of the shear layer at the cloud
boundary.

b. Effect of cloud thickness Lc

In simulation B02, τ is fixed and the thickness of the
cloud layer is doubled, i.e. Lc = 2m. This increases the
distance between the left boundary and the shell as shown
in figure A1(c). In A03, since the shell forms around 2m
from the left boundary, turbulent eddies of scales greater
than 2m will be inhibited by the left boundary. By incre-
asing the width of the cloud layer, eddies of larger sca-
les are also allowed to develop. However, the presence
of these larger eddies do not have an effect on the length

scale of the shell l∗ as shown in figure A1(c). This also
highlights the fact that entrainment is dominated by the
small scale mixing and could also be an explanation for
the agreement between the entrainment coefficients in this
DNS study and the LES study in Romps (2010) (which
also includes much larger scales of turbulent motion). The
relations for l∗ and wmin hold for this case setup as well.
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